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The Ornstein—Zernike (OZ) equations are solved for the sticky electrolyte model (SEM) with
a hard sphere solvent using the hypernetted chain (HNC) approximation for the stickiness
and the mean spherical (MS) approximation for the electrical interactions. Relations among
the coefficients of Baxter’s ¢ functions and the equation for the excess internal energy are given
in the MS approximation for L<o, where ¢ is the molecular diameter, and L is the distance at
which the oppositely charged ions can stick. The analytical results for L = o in the HNC/MS
and PY/MS approximations are presented in detail. When the charges are switched off, the
results automatically lead to those of the sticky hard sphere system; when the stickiness is
turned off and the discrete solvent is changed to a continuum, the results lead correctly to
those of the restricted primitive model (RPM). The thermodynamic properties of the SEM in
a hard sphere solvent for L = o are calculated and compared with the properties in a
continuum solvent; special attention is paid to the derivation of the osmotic coefficient in the
McMillan-Mayer system for the SEM and for the corresponding uncharged system. By
switching off the charge and the stickiness, the osmotic coefficient of an isotopic solute-solvent
system is also obtained. The numerical results show that the hard sphere solvent has a strong
packing effect on the structural and thermodynamic properties of the electrolyte and the
association of the oppositely charged ions is greatly enhanced by the hard sphere solvent. The
influence of a discrete solvent on the osmotic coefficient is quite subtle: for the charged system,
the solvent tends to raise the osmotic coefficient; for the sticky hard sphere system, the solvent

Solvent effects in weak electrolytes. I. Effect of a hard sphere solvent on the
sticky electrolyte model with L =¢

has just the opposite effect.

I. INTRODUCTION

The sticky electrolyte model (SEM) for weak electro-
lytes has been discussed recently in a series of papers'™; simi-
lar models have been introduced earlier in the study of asso-
ciation reactions in uncharged systems® and in the study of
adhesive hard spheres.® In this paper we begin a study of the
effect of a discrete molecular solvent on weak electrolytes
using the sticky electrolyte model. The effect of a hard
sphere solvent on the chemical equilibria of nonelectrolytes
has already been studied by Pratt and Chandler’® and, in the
context of the chemical association model discussed here, by
Cummings and Stell® and Lee ef al.'® Our investigations re-
veal that the granularity of the solvent has a much more
subtle effect on the osmotic coefficient of a weak electrolyte
than would have been apparent from the study of solvent
effects in uncharged chemically associating systems alone.

We begin our analysis in this paper by considering sol-
vent molecules which, apart from the charges and the sticki-
ness, are in every way identical to the solute species. Our
earlier work'™ on the SEM assumed a continuum solvent,
and much attention was paid in observing how ion associ-
ation is influenced by the distance L at which binding occurs
between oppositely charged ions. However, the solvent will
also play an important role in the formation of ion pairs
because the ions are distributed in the solvent medium. We
expect that different solvents will have varying effects on the
association process determined by the density, shape, polar-
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ity and polarizability of the solvent molecules to name some
of the factors. A hard sphere solvent will enhance ion associ-
ation considerably, because the hard spheres can pack
around the ions squeezing them together and increasing the
chances of the ions coming in contact. Things may be quite
different for the dipolar solvent; the excluded volume of the
dipolar solvent will have an effect similar to that of hard
spheres, but the dipoles can also have the opposite effect by
approaching close to the ions (solvating them) and creating
a barrier to ion association thereby keeping them apart. The
enhancement or reduction of ion association will be deter-
mined partly by the competition between these two. More-
over the properties of the solvent will also be influenced by
the ions immersed in it; all of these effects come from the
interactions between the solvent molecules and solute parti-
cles with each other.

In order to determine the extent to which the solvent
influences the association of oppositely charged ions, we de-
vote some effort to this subject in this and the following pa-
pers. In a systemetic way, we start by presenting the results
of the SEM with the hard sphere solvent, assuming a finite
dielectric constant for the solvent typical of a medium like
water at room temperature. In this way we hope to separate
the long-range dielectric effect of the solvent from the effects
due to solvent granularity. We also confine ourselves here to
binding between oppositely charged ions at L = o, since the
analysis is simplest for this choice, but the physical effect of
the solvent remains very much the same as when binding
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occurs at smaller values of L. In the forthcoming papers we
intend to consider the consequences of introducing solvent
molecules with a finite dipole moment and eventually bind-
ingat L<o.

Since our results are presented in analytic form, it is a
relatively simple matter to investigate the effects of turning
off the charges and the stickiness in succession, leaving be-
hind an isotopic mixture of solute and solvent particles.
When the.charges alone are turned off, we have a mixture of
hard spheres A and B of the same size in which there is
stickiness between A and B but not between the A’s or the
B’s alone. The effect of a hard sphere solvent on this associ-
ation reaction has been studied by Cummings and Stell,’
when the binding between A and B occurs at distances (L)
equal to one-half and one-third the molecular diameter o.
Our discussion in this paper also provides the corresponding
results for the uncharged system when L = g, i.e., when
there is surface adhesion between A and B.

The SEM mimics the behavior of a weak acid, for exam-
ple, by introducing a delta function interaction between the
oppositely charged ions leading to the formation of dimers,
which increase in number with the electrolyte concentra-
tion. This is quite different to the formation of ion pairs in the
restricted primitive model (RPM) (charged hard spheres)
which is invoked in discussions of the thermodynamics of
higher valence aqueous electrolytes, for example, at room
temperature. Here the enhanced shielding of the charges
with increasing electrolyte concentration causes the electro-
statically bound ion-pairs and clusters, present at low con-
centrations, to break up beyond a critical concentration and
to decrease in number as the electrolyte concentration in-
creases.''~!3 This is quite the opposite of what is found in the
sticky electrolyte model.

In the SEM, the Mayer f function for the interactions
between the ions is given by

fi(n=¢L(1=6,)8(r—L)/12—1, O<r<o (L)

=exp[(ee;/ekTr)] — 1, (1.1b)

where §; is the Kronecker delta, r is the distance between the
ions, o is their diameter, L is the distance at which the oppo-
sitely charged ions stick together, ¢, is the charge on theion i,
€ is the dielectric constant of the medium, and § is the stick-
ing coefficient which measures the strength of the bonding
between the positive and negative ions; it is the inverse of the
parameter 7 used by Baxter in his study of adhesive hard
spheres.® The presence of the delta function in the Mayer f
function induces a delta function in the correlation function
h;(r) between the ions with a different coefficient A called
the association parameter. For r < o,

hi(ry = — 1+ LA(1 —6,)6(r—L)/12, r<o. (12)
The average number (N) of dimers can be written as

(N) = 9A(L /0)* where 7 = mpa*/6 and the reduced asso-
ciation constant®

K=mAL/0)3/[3(1 — (N))?].

r>o

(1.3)

The sticking coefficient £ and the association parameter A
are related by the equation

i=§y+—(L9§), (1~4)

wherey_ _ (7,{) is defined in terms of the radial distribution
function by

g, ) =[14+f, Oy, _(nd). (1.5)
The SEM has been solved using the hypernetted chain-mean
spherical approximation (HNC/MS) and the Percus—Ye-
vick mean spherical approximation (PY/MS) for theions in
a continuum solvent medium for several distances L, less
than or equal to the ion diameter ¢, at which the ions of
opposite charge can bind or stick to each other.'™ The model
may be considered to be a modification of the restricted
primitive model (RPM) to which stickiness or binding has
been introduced in the Hamiltonian. When the stickiness is
switched off, all the equilibrium properties for this model
obtained in a given approximation must become equal to the
corresponding results for the RPM in the same approxima-
tion. This serves as a useful test of an analytic theory such as
the mean spherical approximation (MSA).

This paper is planned as follows. In Sec. II, the Orn-
stein-Zernike equations and closures for this problem are
discussed for L = g/n where o'is the molecular diameter and
n is an integer. In Sec. I11, a detailed discussion of the solu-
tion of the SEM with the HNC/MS closure and the PY/MS
closure is given for n = 1. In Sec. IV, we derive the thermo-
dynamic properties for this system and the corresponding
sticky nonelectrolyte (SN) model. Numerical results for
both models are presented and discussed in Sec. V.

1. THE ORNSTEIN-ZERNIKE EQUATIONS AND A
GENERAL EXPRESSIONS FOR THE EXCESS ENERGY
WHEN L=¢/n

Our system contains three components: positive ions,
negative ions and the hard sphere solvent all of the same
diameter . We will characterize them with the subscripts 1,
2 and 3, respectively. The Ornstein—Zernike equations for
this mixture can be written in the following form

by = ¢y +picurhyy + pocia*hi; + pacisths,  (2.1a)
hia=Cpz + pre*hiz + paia*hyy + pscis*hy;,  (2.1b)
hiz = ¢13 + prei*his + pria*his + psciathss,  (2.1c)
b3y = €31 + piCar*hyy + PaCar*hiz + psCaz*hyy,  (2.1d)
b33 = €33 + p1C3y*h3 + PoCay*hyy + PiCaz*hys,  (2.1€)

wherep; is the density of species i. In the above equations, we
have used the relations: f;; = f;, fi, =/fu» f51 =/5, and
fis = fo3 where f;; represents ¢;; or h;;. The symbol * repre-
sents the convolution integral. The closure equations in the
mean spherical approximation (MSA)) can be written as

Cl1=Cyp= — e/ (erkT), r>o (2.2a)
Ca=c¢y= —&/(erkT), r>o (2.2b)
Cl3=0Cr3=0C3=C3p=0C33=0, r>0 (2.2¢)
hy,=hp=—1 O<r<o (2.2d)
ho=hyy= —1+AL6(r—L)/12, O<r<o (2.2e)

hl3=h23=h3l=h32=h33= —_ 1, 0<r<0’. (2.2f)

Here, it will be noticed that a delta function, which mimics
the stickiness between positive and negative ions, has ap-
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peared in the correlation function of the oppositely charged
ions. For symmetrically charged electrolytes, we also have

Pr=pr=p/2 2.3)

Introducing the following sum and difference correlation
functions

h,=(hy; + k)2 (2.42)
hp = (hy; —hy)/2 (2.4b)

with similar definitions for ¢, and ¢, allows the set of Egs.
(2.1) to be greatly simplified, leading to

hp =cp —pep*rhy, (2.5a)
hy =c, + pegrh, + pscizrhs, (2.5b)
hys = ¢y + pe*hys + pscisrhss, (2.5¢)
h3y = €3y + peay*h; + pscsshy, (2.5d)
hs3 = €33 + pe3 *hy3 + p3csshs,. (2.5¢)
The closure relations can now be rewritten as
h,= —1+ALS(r—L)/24, O<r<o (2.6a)
h, =LA8(r—L)/24, O<r<o (2.6b)
¢, =0, r>o (2.6c)
cp, =e*/(erkT), r>o. (2.6d)

The difference (2.5a) with the closure equations (2.6b) and
(2.6d) is exactly the same as for the SEM in a continuum
solvent, which has been solved in earlier papers.!™ We only
need to solve the remaining four equations which involve the
solvent molecules at a density p;. When the solvent density
P is zero the last three equations and the last term of the
second equation vanish, making the sum equation identical
to the corresponding relation for a continuum solvent. Fol-
lowing Baxter,'* we define the integral functions

J.(r) =r th, (1), (2.7a)
J,(r) = r th,) (t)dt, (2.7b)
S (r) = J“’ te, (2)dt, (2.7¢)
S, () = fw te,, (). (2.7d)

Baxter’s Wiener-Hopf factorization'* of (1 — pc;) etc.
in Fourier space enables the set of OZ equations (2.5b) to
(2.5e) to bereplaced by the following equations in real space

for the correlation functions:

rh(r) = —q'(r) + 27ij q,(Y(r—)h (|r—t|)dr
0

+ 21Tp3f ql3(t)(r_ t)hgl(lr—- t')dt, (2.8a)
(V]

rhi(r) = — g3 () + 21Tpf g, () (r—h,(|r—t])dt
0

+ 21Tp3J. Q13(t)("—- t)h33(|r— tl)dt, (2.8b)
0

rhy(r) = — g3, (r) + 2ﬂpf @ (D (r—)h,(|r—1t]|)dt
0

+ 27Tp3f ga3(8) (r— t)hy (Jr — t|)dt, (2.8¢)
0

rhy,(r) = — g5 (1) + 217'pf g, (1Y (r— )y ([r—t|)dt
0

+ 277'P3f
0

o

q33(t)(r— t)h33(|r— t,)dt, (2.8d)

and

re,(ry= —gq.(r) + 27rpf g, (t—r)q.(t)dt

+ 27rp3freo g, (t —r)g;, (t)dt, (2.9a)
reys(r) = —qi; (1) + 27rpf g, (1 —r)gi; (t)dt
+ 2ﬂ'p3J:m qs,(t — r)q;; (t)dt, (2.9b)
res(r) = — g3, (r) + 21rpf q13 (2 — r)g;(t)dt
+ 27rp3J:w q13(t — r)g;, (1)dt, (2.9¢)
ress(r) = —qi; (r) + 27erZw qi3(t —r)gi, (Ddt
-+ 21Tp3er q13(t — r)g;; (t)dt, (2.9d)

where ¢, (7), 137, 4:1(7), and ¢;3(r) are the corresponding
Baxter ¢ functions which are zero for r < 0. Using the MSA
closures given in Eqgs. (2.2) and (2.6) it follows that each of
the g functions are also zero for > o, which allows the upper
limit of o in the integrals of the factorized OZ equations to
be replaced by o. These equations are quite general except
for the restriction that the solute and solvent molecules are
of the same size and together with the difference (2.5a) and
the closures given in Eqs. (2.6b) and (2.6d) constitute a
complete set of equations for this problem. The integrated
forms of Eqs. (2.8) can be written as

J(r) =¢q,(r) + ZWPLN g, (I, (|r—t|)dt
+ 27rp3J:o q13() 5, (|r — t|)dt, (2.10a)
Talr) = aus(r) + 210 [ 4,0y (Ir =2y
+ 27Tp3J: 13 ()53 (Jr — 1)) dt, (2.10b)
I3 (r) = g5, () + 21rpf: g3, (DI (|r—t|)dt

+ 2n'p3f gs3(8)J5, ([r — t])dt, (2.10c)
0
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Jas(r) = g53(r) + ZVPJ g3 ()3 (|r—t|)dt
0

+ 2ﬂp3f g3 (DI (jr — t])dt. (2.10d)
()]

From Eqgs. (2.6a) and (2.8a) it follows that in the region
O<r<o

qs(r) +pgs(r+ L)

=ayr+b —AL*(r—L)/24, O0<r<L (2.11a)
qs(r) +P[qs(’+L) —gqs(r—L)]

=ar+b, L<r<o-L (2.11b)
qs(r) —pgs(r—L)=ayr+b, o—L<r<o (2.1lc)
where

p=mapAL?*/12 (2.12)

a,=a; +4a, (2.13a)

by=b, + by (2.13b)
and

a=1-— 27er q.(t)dt, b, = 217'pf tq. (t)dt
0 0
(2.14a)

o 0

1q,5(t)dk.
(2.14b)

Likewise the differential equations for g;,(r) follow
from Eqgs. (2.2f) and (2.8c):

a; = — 21rp3L q:(8)dt, b= 27rp3JO

431 (r) + pgs,(r+ L) =asr + b;, 0<r<L (2.15a)
g3 +plgs(r+ L) + g5, (r—L)]

=ayr+b;, L<r<o—L (2.15b)
g1 (1) —pgs(r—L) =ayr+ b5, o—L<r<o (2.15c)
where

a3 =d; +ds3 (2.16a)

by = by, + by, (2.16b)

and

a;, =1~ 21er; g5, (1)dt, by, = 277'pJ0 tg;,(2)dt,
(2.17a)

ay3 = — 277'P3J0 g3(D)dt, by = 27TP3L 1g53(2)dt.

(2.17b)
The absence of stickiness between the solute and solvent

accounts for the fact that there is no delta function in the
differential equation for g,,(r) at r = L. The differential
equations for ¢,5(7) and ¢;;(7) are similar to each other and
involve the same sets of coefficients (a,, b,) and (a5, b;); in
the range 0 < r < o it follows from Egs. (2.8b), (2.8d) and
2.2f) that

g (r)=ar+b, O<r<o (2.18)

and
g (r) =ayr+b; O<r<o. (2.19)

The last two equations are identical to the differential equa-
tions of the ¢ functions in the Percus-Yevick approximation

for hard spheres of diameter o and the solutions are immedi-
ate'”:

gy =a, (P —0*)/2+ b,(r—0), O<r<o,
gs3(r) = a3 (P —0*)/2+ by(r—0o), O<r<o.

(2.20)
(2.21)

The solutions for g,,(#) and g5 () can be used to elimi-
nate a,; and b,; from Eqgs. (2.13) and a;; and b,; from Eqgs.
(2.16). Substituting g,5(¢) in Eq. (2.14b), ¢,;(¢) in Eq.
(2.17b) and making use of Egs. (2.13) and (2.16), we get
the following relations between the coefficients:

ay = [a,(1+27m5) + 613b;]/(1 —13)%, (2.22a)
by =[bi(1—45,) —3a,m:/2]/(1 — ;)% (2.22b)
ay = [as;,(1+293) +6b5,m5]/(1 —15)%,  (2.22¢)

by = [b3 (1 —41;) — 3a,,75/2]/(1 — 3,)?, (2.22d)

where b | = b,/0. These equations apply in the MSA for ar-
bitrary L<o but the details of the solutions for a given
L = o/n are determined by the integer n through the coeffi-
cientsa,, b/, a;, and b,,.

We will next consider the difference equation for arbi-
trary L = o/n. It has already been shown' that factorization
of the difference equation leads to the pair of equations

rhy(r) = &(F) + 277,;[ [45(r) +M]
0

X (r—8hp(|r—t|)ds, (2.23)
rep (r) = g5 (r) + 27p[ Mg (1)
—f gp (g3 (1 + ndt], (2.24)
(¢]
where g% (r) is zero for r <0, ¢%, (r) is defined by
cp(r) =c%(r) + é*/ekTr (2.25)

and M = — «/2mp where « is the inverse Debye length de-
fined by

K* = 4me’Pp/e.
The integrated form of Eq. (2.23) is

(2.26)

Jo(r) = —g%(r) —M/2+21rpf dr gy (), (lr—t|)
0

- f Jp(2)dt. (2.27)
0
The MSA closure given in Eq. (2.6d) is equivalent to
% (r) =0for (r>0). (2.28)

Substitution in Eq. (2.24) shows that ¢% () =0 for r>o
enabling the upper limits of integration equal to « in Egs.
(2.23), (2.24), and (2.27) to be replaced by o.

Because the hard sphere solvent has no interaction with
the ions apart from the hard core repulsion, the excess inter-
nal energy has the same functional form as the energy of the
SEM without the molecular solvent. It can be written as'~

BE*/N= — (N)(dIn¢/dnB)/2

—(1+dlne/dIn T)kH /2, (2.29)
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where

H=Kf shp, (s)ds. (2.30)
The first term in Eq. (2.29) comes from the binding of the
oppositely charged ions, while the second term arises from
the electrical interactions between the ions and is determined
by the difference equation. It follows from the analysis in
Ref. 3 that in the MSA for the SEM in a hard sphere solvent,
H' = H /o has the form

H'(SEM/MSA) = [(a, + a,x) — (a, + 2xa;)"/?]/

(24a,7) (2.31)

Jor any integral value of n = a/L. The coefficients @, (i = 1
to 4) are functions of the ionic concentration, the association
parameter A and n. When A =0, (N ) =0, all of the g, = 1
and the expression for the excess energy of the restricted
primitive model (RPM) in the MSA is recovered. The de-
tails of the solution of the SEM for n = 1 will be discussed
next.

lil. THE HNC/MSA AND PY/MSA SOLUTIONS OF THE
SEMFORL=¢

Equations (2.6a) to (2.6d) are the MSA closures for
bonding between oppositely charged ions at a distance L<o.
In the remainder of this paper we restrict our attention to
L = o — , which implies that the opposing charges can stick
together on contact, i.e., surface adhesion between the posi-
tive and negative ions is allowed, and polymerization is not
excluded by steric effects."™ The solutions for L = o/n
(with n = 2,3...) can be obtained in a similar way as shown
earlier for the SEM in a continuum solvent'™ but the analy-
sis is more complicated and will not be given here. However
the excess energy in the MSA for arbitrary # is still provided
by Egs. (2.29) and (2.30).

To solve the set of equations (2.8a) and (2.9a) for
L = 0, we need to get the relevant ¢ functions. From the
definition of J, (7) given in Eq. (2.7a) and the closure equa-
tion (2.6a), it follows that

J(o—)=J,(0+)+A5/24. 3.1

Making use of the fact that ¢, (r) = 0 for >0, it follows
from Egs. (3.1) and (2.10a) that

q.(0—) =1d%/24. (3.2)
From Eq. (2.11) we find that for L = o,
g(ry=ar+b, O<r<l, (3.3)

where a, and b, have been defined earlier and are given by
Egs. (2.22a) and (2.22b). Integrating and applying the
boundary condition (3.2), we get

q.(nN=a,(P—02)/2+b,(r—o) +10°/24. (3.4)
Substituting this in Eqs. (2.14a) we find that
a,=[(1 = 17)> + 72+ 73)
— (1= 73)(1 = 3o)v1/(1 — ) 3.5)
and
bi=b/o= —[37— (1—2,)(1—ne)v)/[2(1 — 5p)2].
(3.6)

Combining Eqgs. (3.5) and (3.6) with (2.22a) and (2.22b)

we have
a; = (1429,)/(1 —5o)*> —v/(1 — 1), (3.7a)
1= —=39/[2(1 —90)?] + v/[2(1 — )], (3.7b)

where 7, = 9 + 73, 9; = mp,;0°/6, v = nA /2. The solution
to Eq. (2.15) for L = cois

g3 (r) =a;(P —0d°)/2+ by(r—o), O<r<o (3.8)
which is the ¢ function in the PY approximation. Substitut-
ingin Egs. (2.17a), solving for a;, and b ;, and using them in
Egs. (2.22¢) and (2.22d) it is found that

ay = (14 270)/(1 — 7,)? (3.92)

by = —3ny/[2(1 —7,)?] (3.9b)

which are the coefficients of the PY solution for hard
spheres.®

The direct correlation function c;; (r) can be obtained
from Eqs. (2.9a) and (3.4). Here we give only c, (), the one
we are most interested in. For r < o,

c(r)=A,+ A, (r/0) + A3(r/0)? + A (o/r),
where

Ay=— (14290 —p) (1 + 299 — o) /(1 — 70)*

(3.10)

+v(1 429, — 1)/ (1 —70)3, (3.11a)
Ay =310(2 + 15 — 1)*/[2(1 — 7)*]

= v(1+ 290 — )/ (1 — 1,)?, (3.11b)
Ay= —mo(1 + 27 — 1)*/[2(1 — 7y)*], (3.11¢c)
Ay = — Av/24, (3.11d)

where 4 = v(1 — 7,). If the range or 7 is extended to include
r = o adelta function equal to Ao6 (r — ) /24 has to be add-
ed to the expression for ¢, (). As expected, when the concen-
tration of solvent is set equal to zero (17; = 0), Eqs. (3.10)
and (3.9) reduce to the results of the SEM in a continuum
solvent.'® Also when the stickiness vanishes (1 = 0), all the
above results reduce to the PY approximation for hard
spheres. The contact value of 4,(r) follows from Egs.
(2.6a), (2.8a) and (3.4):

h(o+)= — 14+ (247, —2u)/12(1 — 7,)*] +v4/24.
(3.12)

The solution to the difference equation has been ob-
tained earlier.'™ For L = ¢ it was found that®

45 (r) = —kJ(r — o) — oA /24, (3.13)
where
J={(1 +v+«ko) — [(1 +v)? + 20)"?}/ 2mpcic)
(3.14)

is the solution to the following quadratic equation:
mpoK]? — (v + ko + 1)J + (ko + 2v)/(4mpo) = 0.

(3.15)
The function ¢, (r) for 0 < r < o is given by
cp(r) = 2J(1 — apJr) + Ava/(24r)
= ¢*/(ekTo)[2B — B*(r/0)] + Ava/(24r),
O<r<o, (3.16)

where
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B =2mpJo={(1+4v+xo)
— [+ )2+ 2¢a]1'?}/ (ko). (3.17)

If the range of r is extended to include r = o, a delta function
equal to Ao8(r — o) /24 must be added to the expression for
¢p (7). From Egs. (2.6), (2.23) and (3.13) it is found that®

hp(o+ ) =€ (B—1)/(ekTo) — Av/24, (3.18)
where the quadratic equation (3.15) in the form
ko(B—1)2=2B(v+1)—2v (3.19)

has been used in simplifying the algebra. From the definition
of the sum and difference functions given in Eq. (2.4) and
the above results for 2 (o + ) and A, (o + ), it follows that
the contact value of the ion radial distribution function can
be written as

g, _(oc+)=h, _(c+)+1=Q2+n—2u)/

[2(1 — 50)?] + €(B — 1)*/(€kTo),
(3.20)

8i4lo+ ) =h++(0+) +1= (2+770—2,U)/
[2(1 — )%} —e2(B—1)Y/

(ekTo) + Av/12. (3.21)

The analytic results given above for the direct correlation
function and the distribution functions at contact become
identical to the MSA solution'! of the RPM when the sticki-
ness is turned off (4 = 0) and the solvent density is set equal
to zero, i.e., 7; = 0. In addition, if we set only the association
parameter A = 0 in our equations we have the analytic solu-
tion of charged hard spheres in a hard sphere solvent in the
mean spherical approximation.

Now we are in the position to determine association pa-
rameter 4. Making use of Eq. (1.4) and defining 7 = 1/, we
have

Ar=y,_ (o). (3.22)
The PY/MS approximation leads to
Ar=g, _(0,)—c, _(0+)
= (241 — 2u)/[2(1 — 95)*] + (B> —2B)/
(ekTo) (3.23)

which can be rearranged, using Eq. (3.17), into the follow-
ing cubic equation for v:

V(2¢, — 4) + V(A + 2¢, — 6 — 2x) + v(2c,c, — 4 — 4x)

+ (3 —2x—1)=0, (3.24)
where
¢, = — 247+ (2 — 149 —21,)/(1 — 75), (3.25)
=14+60(24+7,)/(1 —no)> + (2x —x%)/2,  (3.26)

and x = 0. This equation can be solved analytically, and we
choose the physically acceptable value of 4 which must be
real and positive. In the HNC/MS approximation, we have

Ar=explh, _(0+)—c,_(0+)]
=exp{(2 + 7o — 2u)/[2(1 — 9,)?] + e*(B* —2B)/
(ekTo) — 1}. 3.27)

This equation, however, has to be solved numerically by iter-
ation. In both cases, either in the PY/MS approximation or
the HNC/MS approximation, the solution of the SEM with
a hard sphere solvent reduces to the solution of a nonlinear
algebraic equation.?

At zero charge the adhesive electrolyte in a hard sphere
solvent becomes an adhesive (or sticky) nonelectrolyte
(SN) in the same solvent and the MSA for the RPM electro-
lyte becomes identical to the PY approximation for hard
spheres. The SN system has already been studied by us in the
absence of a solvent or when the solvent is treated as a con-
tinuum.? In the following section we will discuss the thermo-
dynamic properties of an adhesive nonelectrolyte in a hard
sphere solvent after an analysis of the corresponding sticky
electrolyte model.

V. THERMODYNAMIC PROPERTIES OF THE STICKY
ELECTROLYTE AND STICKY NONELECTROLYTE
MODELSFORL=¢

Although the hard sphere solvent has no interaction
with the ions except for the hard core repulsion, it still has an
influence on the excess free energy and the other thermody-
namic properties through its effect on the degree of ion asso-
ciation as observed by the magnitude of the association pa-
rameter A. The general expression for the excess energy has
already been discussed—see Eqs. (2.29) and (2.30). With
binding at L = o, (N ) = 4 and the solution to the MSA
leads to®

H ={(14+v) +«o(l —v)

— [(1 +v)? + 2k0]"?}/(129) (4.1)

which is related to the excess energy through Eq. (2.29).

The calculation of the excess Helmholtz free energy has
been discussed elsewhere®* for the SEM in a continuum sol-
vent, but in a hard sphere solvent we have additional contri-
butions to the free energy from the hard cores, the stickiness
and the electrical interactions between the ions. For the part
contributed by the stickiness, we adopt the following formu-
1a®

PAATN = — (n/2)£§y+_(a,§')d§’
= —v[l—-Iny, (0{)]

— (77/2)J:y+_(a,/1 "YdA ', 4.2)

where A4 “* is the change in the excess free energy due to the

binding between oppositely charged ions. Using Eq. (3.22)
fory, _(0,5) in Eq. (4.2) and integrating it out, we have

BAA*N = — 9/2{A + 1%/
[4(1 — 7o) ] —A%/24 — A 3/72

+ (1 +2x)2/(18%%) + Y}, (4.3)

where
Y=[(1+74/2)" 4+ 2x]'?(PA7 + pd — 2 — 4x)/(367%).
(4.4)

When A = 0, it is easily verified that A4®* is zero; when the
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solvent concentration decreases to zero we recover the
expression for the excess free energy difference in the HNC/
MS approximation for the SEM in a continuum solvent.

The free energy difference between a sticky nonelectro-
lyte and hard spheres can be obtained by turning off the
charges in Egs. (3.23) and (3.27) and making use of Eq.
(4.2) when we find that

B(A™ —A™)/N = (mn/2n) In [(m — nd)/m]
(PY) 4.5)
BA™ —A4™)/N = —n{d + A Y/[4(1 — 54)1}/2
(HNC/PY), (4.6)
where
m=(2+ 7,)/[2(1 — 15)?] 4.7
n=n/{2(1—mn)]. (4.8)

The pressure differences in the PY and HNC/PY approxi-
mations are obtained by differentiating Egs. (4.5) and (4.6)
with respect to the reduced density:

(P — P™)/pkT = (n/2n)[m + m'n — mn'n/n]
Xln [1 — nd /m]
+ 7*(—mn'A —mnd' +nm'A)/

[2r(m — nA) ],(PY) (4.9)
where
m' = (54 10)/[2(1 — 70)°1, (4.10)
n' = (1—7,)/[2(1 = 1,)°], (4.11)
A'=A[5+7m,—A(1 — 1) (1 —713) 1/
[(1—75)(2+ 7)) (4.12)
and
(P — P™)/pkT = — (n/2{A + A2 — 215 + 1)/

[4(1 =707
+ A2 =271+ 9A) [5 + 70
— A1 =n0) (1 —73)1/
[4(1 —70)* + 294(1 — 10)°1}
(HNC/PY). (4.13)
To determine the osmotic coefficient of the SEM in the
McMillan-Mayer system, we have to expend a little more
effort since the chemical potential of the solvent is held con-
stant. To realize this requirement, we write the Gibbs—Du-
hem equation at constant T and constant chemical potential
of the solvent in the following form
d(P—~ P*) —pd(u* — p*) =0. (4.14)

Here p° is the chemical potential of the solute, and the
superscript id refers to an ideal system. Intergrating by parts,
dividing by kT on both sides and using the following separa-

tion of the chemical potential of the solute
,us _'us,id =’us,hs +Ius,el +‘u’s,st (415)

we can write Eq. (4.14) as

(P__Pld)/ka — (”s,hs +lus,el +'us,st)/kT_p—l

P
Xf [(‘US'Sh +’us,el +ﬂs'5t)/kT]dpl.
0

(4.16)
This is equivalent to
é—1=¢* = (P—P%)/pkT
— ¢hs,ex + ¢cl,ex + ¢st.ex (417)
with the excess osmotic coefficients defined by
0
¢hs,ex =lus,hs/kT_p—1f (ﬂs'hs/kndp, (4183.)
o]
4
¢el,ex =Ius,el/kT_p—lf (,U.s’el/kT)dp, (418b)
0
7
¢st,ex =#s,st/kT_p—-lf (#S'St/kndp, (4180)
0

where the superscript el means the electrical part, st means
the sticky interaction part, and hs the hard sphere part. For
the hard sphere mixture (hard sphere solute + hard sphere
solvent of the same size), the Helmholtz free energy in the
Carnahan and Starling!” approximation is given by

A™ = NkT [In 75 + 175(4 — 3770)/(1 — 55)%1, (4.19)

where the total number of particles Ny = N 4 N,. Differen-
tiating 4 ™ with respect to N gives the chemical potential of
the hard sphere part

/T = (839 — 9% + 313) /(1 — 75)>. (4.20)

From the solution of the restricted primitive model (RPM),
the electrical interaction part of the chemical potential can
be written as

,us’el/kT= _ [3x2 + 3x — 3x(1 + 2x)1/2]/7277'
(4.21)

From Eq. (4.3) and the HNC closure (3.27), we can get the
chemical potential of the sticky interaction part as

w/kT = —p{A + 394 %/[8(1 — )] + v/
[2(1 = 70)21} + (v + VA /12 + MA /T2
+ (dA/dp) [ — 7?72 — A /14(1 — )]
+ 7M,/72 + (v + ) /12], (4.22)
where
(dA/dn) ={A(5+ 1) —A%(1 — o) (1 — 73) + xM A
X (1 —79)3(2B — 2)/129*}/{2(1 — 7,)3
+ A1 — 10)% + xMA(1 — 1)

X (2B — 2)/129°} (4.23)
M=[-14+v+a— 2v+2v¥+x)/al/2 (4.24)
M, =[n* —*(1 +v)/al/2 (4.25)
M;= —a(l+4v) 4+ (1 +v)

X(1+2x—v+2%)/a (4.26)
a=[(14+v)2+2x]"2 (4.27)

Substituting Egs. (4.21) and (4.12), into Eqgs. (4.18a) and
(4.18b) we have .
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g =3 —m)(1—799) > — (329 —4n,
+ 7om3) (1 — 1) 72(1 —3) 2 (4.28)
= [2 4 3x — 2+ x)(1+2%)"2]/729.  (4.29)

Equation (4.29) is the excess osmotic coefficient of the RPM
electrolyte in the MSA.'® The contribution from stickiness
to the excess osmotic coefficient ¢** has to be calculated
numerically from Eqgs. (4.18¢c) and (4.22). It is interesting
to note that when the solvent density is zero (7, =0), Eq.
(4.28) reduces to the excess osmotic coefficient of a hard
sphere solute in a continuum solvent. When the solute den-
sity is zero (7 = 0), Eq. (4.28) leads correctly to an excess
osmotic coefficient of zero for hard spheres (¢"* =0).
When A = 0 the expressions derived above also provide the
osmotic coefficient of an RPM electrolyte in a hard sphere
solvent.

The osmotic coefficient of a sticky hard sphere solute in
the McMillan-Mayer system in the HNC/PY are obtained
by setting the charges equal to zero in Eq. (4.22) when we
find

p/kT = — p{A + 394 /[8(1 — 3p) ]
+ v /[2(1 — 0)*1} — (9*/4)
X[24+747(1 —10)]
X[A(5 + 10) — A2(1 — o) (1 — 73) ]

X [2(1 = 70)3 + pA(1 — 50)2] . (4.30)

This is the contribution to the chemical potential from the
adhesive interaction between the hard sphere solute species
A and B immersed in a hard sphere solvent. When the adhe-
siveness is removed (A = 0), the system is similar to a mix-
ture of two isotopes separated from one of the isotopic com-
ponents (the solvent) by a semipermeable membrane
through which the other isotopic species (the solute), which
is present on one side of the membrane, cannot pass.

V. RESULTS AND DISCUSSION

In order to compare our work with some of our earlier
results,* we choose the parameters of the ions and solvent the
same as that of the SEM without the molecular solvent. The
temperature is taken as 298 K, the diameter is 4.2 A, the
solvent dielectric constant is 78.358, and the valences of the
ions are + 2 and - 2, respectively.

The association constant A is obtained by solving Eq.
(3.24) or (3.27) at different electrolyte concentrations and
the association number (N ) is determined from (N ) = gA.
The results in the HNC/MS approximation are shown in
Fig. 1. It is apparent from the figure that when the hard
sphere solvent is added, both A and (N ) increase greatly
because of the packing effect of the solvent. In the PY/MS
approximation, a negative value of A is found’ for the param-
eters chosen in this study. Since this is physically unaccepta-
ble, this approximation will not be considered further.

The excess internal energy £ and the change in the
excess Helmholtz free energy A4®* due to the stickiness are
plotted in Figs. 2 and 3, respectively, with the corresponding
results for the same electrolyte in a continuum solvent of the
same dielectric constant. In the calculation of the excess in-

80.0 1.6

1.2
A 60.
60.0 0.8 <N>
0.4
0 1 0
0 1.0 2.0
C - MOL/L

FIG. 1. The association parameter A (solid line) and the average associ-
ation number °(N ) (dashed line) for a 2-2 electrolyte in the SEM with,
L=0=42 A, {=1.098X10°, (7=0.00091), T=298 K calculated
from the HNC/MS approximation. The upper curve is for the electrolyte in
a hard sphere solvent at a reduced density 7, = 0.376, the lower curve is for
the same electrolyte in a continuum solvent 7, = 0. The dielectric constant
of the solvent in both systems is the same (e = 78.358).

ternal energy from Eq. (2.29), we have neglected the tem-
perature coefficient of the dielectric constant of the solvent.
We see from the figures that both E** and A4* become
more negative in the presence of the solvent. This can be
explained by saying that the hard sphere solvent increases
the chances of contact between the ions, thereby increasing
the average number of dimers, which makes the binding en-
ergy and A4 more negative-—see Eq. (4.3).

In studying the osmotic coefficients, we first turn off all
the charges on the ions and calculate the osmotic coefficients
of the solute molecules, initially in a continuum solvent and
then in a hard sphere solvent, keeping the chemical potential
of the solvent fixed. The results are plotted as a function of
the solute concentration in Fig. 4: curve 1 shows the osmotic
coefficient of the hard sphere solute, while curve 2 represents

0 1 1 1
0 Q5 1.0 1.5 2.0

C-MOL/L

FIG. 2. The excess energy E™ plotted as a function of the electrolyte con-
centration for a 2-2 electrolyte. The solid line is for the continuum solvent
(775 = 0), and the dashed line for the hard sphere solvent 7, = 0.376. See
caption of Fig. 1 for electrolyte and solvent parameters.
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0.0 05 1.0 1.5 2.0
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FIG. 3. The change in the excess Helmholtz free energy due to the sticky
interaction plotted against the electrolyte concentration for a 2-2 electro-
lyte. The upper curve is for the electrolyte in a hard sphere solvent
(75 = 0.376), the lower curve for the same electrolyte in continuum solvent
775 = 0. See caption of Fig. 1 for electrolyte parameters.

the osmotic coefficient of the same solute in a hard sphere
solvent of the same size but at a reduced density 7, = 0.376.
Both sets of osmotic coefficients lie above unity and increase
with the solute concentration; the presence of the hard
sphere solvent apparently leads to a further increase in the
osmotic coefficient of the solute. We emphasize again that,
for this system, there is no distinction here between the sol-
ute and the solvent except that it is only the solvent mole-
cules that are allowed to pass through the hypothetical semi-

C--M/L

FIG. 4. The osmotic coefficient of a hard sphere solute in a continuum sol-
vent (77; = 0) and in a hard sphere solvent (7; = 0.376) with and without
adhesiveness between the solute molecules A and B plotted as a function of
the solute concentration. The chemical potential of the solvent is held con-
stant in each case. Curve 1: hard sphere solute, curve 2: hard sphere solute in
hard sphere solvent, curve 3: adhesive hard sphere solute, and curve 4: adhe-
sive hard sphere solute in hard sphere solvent.

permeable membrane in the McMillan-Mayer system that is
under consideration. Curves 3 and 4 are the osmotic coeffi-
cients of the sticky hard sphere solute in a continuum solvent
and in the hard sphere solvent, respectively, from which it
appears that the osmotic coefficient is lowered in the pres-
ence of a hard sphere solvent! It is the opposite of what was
found in the absence of stickiness between the solute mole-
cules. This can be explained by assuming that the hard
sphere solvent has two opposing effects on a sticky solute—it
increases the osmotic coefficient by increasing the density of
particles in the system (the packing effect), but it also re-
duces the osmotic coefficient by increasing the stickiness
between the solute molecules thereby increasing the number
of dimers and other associated species at the expense of the
monomers. The second effect appears to overshadow the
first in the present instance. The situation, as we will see, is
quite different for the charged system.

In Fig. 5, we have the osmotic coefficients ¢ for the cor-
responding charged systems; curves 1’ and 2’ are for the re-
stricted primitive model (RPM) in continuum and hard
sphere solvents, respectively, while curves 3’ and 4 are the
results of the sticky electrolyte model (SEM) in the same
pair of solvents. It is seen that the osmotic coefficient of the
SEM is lower than that of the corresponding RPM in the
same solvent; this is because of the extra adhesive interaction
between the oppositely charged ions in the SEM. The pres-
ence of a hard sphere solvent, however, raises the osmotic
coefficients of the RPM and SEM electrolytes which is the
opposite of what was found for the sticky hard sphere sys-
tems with no charges! Here apparently the packing effect due
to the hard sphere solvent is the dominant one.

Comparing Figs. 4 and 5 we find that the addition of
charge lowers the osmotic coefficient of a nonsticky electro-

0.0 0.5 1.0 1.5 2.0
C--M/L

FIG. 5. The osmotic coefficients as a function of the solute concentration
for a 2-2 electrolyte. Curve 1 RPM in a hard sphere solvent (7, = 0.376)-
HNC/MS approximation; curve 2: RPM in a hard sphere solvent
(1, = 0.376)-MS approximation; curve 3:SEM in a continuum solvent-MS
approximation. Curve 4: SEM in a hard sphere solvent-HNC/MS approxi-
mation. See caption of Fig. 1 for electrolyte parameters and dielectric con-
stant of the solvent.
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FIG. 6. The ion—ion radial distribution function in the HNC/MS approxi-
mation for a 2-2 SEM electrolyte at a concentation of 2 M (7 = 0.0934).
The dashed lines are for the electrolyte in a continuum solvent (7; =0,
A = 5.232), the full lines for the same electrolyte in a hard sphere solvent
(17, = 0.376, A = 18.60). See caption of Fig. 1 for electrolyte parameters
and solvent dielectric constant.

lyte in a continuum or hard sphere solvent, while just the
opposite is true when the ions can stick to one another! The
passage from a continuum to a granular solvent influences
the osmotic coefficient in two ways: it tends to increase the
osmotic coefficient of the system when the solute molecules
(charged or uncharged) do not stick or if the solute mole-
cules are charged (ions) and can stick to one another. If,
however, the charges are removed from the sticky electro-
lyte, the change from continuum to a hard sphere solvent
decreases the osmotic coefficient. The competition between
the stickiness and the packing apparently determines the fi-
nal outcome.

The ion—ion radial distribution functions of the SEM at
concentrations of 2 and 0.1627 M were calculated by Per-
ram’s method'® and are plotted in Figs. 6 and 7, respectively;
the dashed lines show the results in a continuum solvent and
the full lines depict the situation in a hard sphere solvent
(n5; = 0.376) which endows the curves with more structure.
We see that the contact values of g, (7) and g, _(r) are
higher in the hard sphere solvent than in its continuum ana-
log. This is accompanied by an increase in both these distri-
bution functions at 7 = 2¢, which is more pronounced at the
higher concentration (2 M). At this high end of the concen-
tration scale the discontinuities in the distribution functions
at 7 = 20 are ordered according to the

g4+ Q20— )>g+—(20'_ )

g++20+)<g, _Qo+),

where — and + in parentheses stand for the subtraction or
addition of an infinitesimal quantity. Since our calculations

10.0

-2.0f

0.0 1.0 2.0 3.0 4.0
r/c

FIG. 7. The ion-ion radial distribution function in the HNC/MS approxi-
mation for the 2-2 SEM electrolyte systems described in the caption of Fig.
6 except that the sticking coefficient § = 24.4 (7 = 0.041), and the electro-
lyte concentration is 0.1627 (% = 0.0076). The dashed line is for the elec-
trolyte in a continuum solvent (7; = 0, A = .0315) and the full line for the
electrolyte in a hard sphere solvent (7, = 0.376, A = 0.29).

correspond to a sticky interaction at » = ¢ —, the changes
observed in the distribution functions at 7 = ¢ and 20 indi-
cate that the packing effect of the solvent increases the
numbers of dimers and triplets over those found in a contin-
uum solvent. For this system, with a dielectric constant of
78.36, the MSA provides no evidence for polymerization be-
yond the formation of triplets.
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