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This paper concerns the “restricted primitive model” of 1-1 aqueous electrolyte solutions at concentra-
tions up to 2.03/. Monte Carlo data are compared with several recent theoretical treatments: those based
on the hypernetted-chain (HNC) equation and the Percus-Yevick-Allnatt (PYA) equation, the mean
spherical model, and the mode expansion and vy-ordering approaches. Some new theoretical calculations
are reported. The hypernetted-chain treatment appears to be the most successful of the integral equation
theories. Of particular interest is the observation of charge oscillation in the radial distribution functions
in both the HNC and Monte Carlo calculations. It is also noted that the cube-root concentration dependence
of the deviation from ideality, previously observed for real systems, occurs also in accurate treatments
of the primitive model. When the diameter of the ions is sufficiently large, the thermodynamic properties
of the restricted primitive model approach those of the corresponding uncharged system at very moderate

concentrations.

I. INTRODUCTION

This article concerns the so-called “restricted
primitive model” of a 1-1 electrolyte solution: that is,
charged hard spheres of equal size in a continuum
dielectric. This is the model on which the Debye-
Hiickel theory is based, although that theory introduces
further serious approximations in calculating thermo-
dynamic properties of the model system. Recently this
model and others have been examined using some
integral equation methods.*® On the basis of tests of
internal consistency, Rasaiah and Friedman came to
the conclusion that, for a 1-1 aqueous electrolyte at
concentrations up to 1.0M, the analog of the hyper-
netted-chain (HNC) equation is superior to that of
the Percus-Yevick equation as derived by Allnatt.?
The latter equation shall henceforth be referred to as
PYA to emphasize its distinction from the usual PY
equation.!-?

Meanwhile the Monte Carlo method has been used
to produce thermodynamic data for the restricted
primitive model.5® An “aqueous” perfectly symmetrical
1-1 electrolyte has been examined in some detail. A
preliminary comparison® of these data with the HNC
and PYA results (which were interpolated to the value
of ionic diameter used in the Monte Carlo study)
indicated good agreement.

This paper reports a further more detailed discussion
of the two different approaches. For this purpose, the
HNC and PYA equations were solved anew using the
same concentrations and parameters as those of the
Monte Carlo (MC) work and were extended in con-
centration up to 2M to match the MC data. Recently
another integral equation, that of the so-called mean
spherical model, MSM, has been applied to electrolytes,’
and analytical expressions have been obtained for the
excess internal energy and osmotic pressure. These
expressions are evaluated below using parameters
identical to those of the MC study.

Another recent contribution to the field has been the
development by Andersen and Chandler® of the
so-called “mode expansion” method (MEX) and its
application to the restricted primitive model of an
electrolyte. This is briefly described later in the paper.
Andersen and Chandler have evaluated the osmotic
coefficients for the particular parameters used in the
Monte Carlo experiments. Stell has discussed the
relationship of this theory to a particular graphical
expansion scheme (v ordering) developed by Lebowitz,
Stell, and Baer.?

The chief methods used in this paper have been
described elsewhere.!* All the ion diameters were taken
to be 4.25 A, and the temperature was 298.0°K. The
dielectric constant ¢ was taken as 78.5 to simulate
water. It is important to note that the excess energy
values U reported here assume that the ionic radii and
the dielectric constant of the solvent are independent
of temperature. This means that the interionic pair
potential is temperature independent. The equations
which contain U are also based on this assumption.
(The dielectric constant of real water varies with
temperature, of course; it is easy to correct the reported
energy values U for this effect.?)

II. MONTE CARLO CALCULATIONS

The basic quantities obtained from the MC calcula-
tions are the configurational energy U and values of the
radial distribution functions g;;(#). The average con-
figurational energy in the canonical ensemble is given by

(W)= / U(q)expl—BU (q) Jdq

//Ve"p[_ﬂU(Q)]dq, (2.1)

where U(q) is the configurational energy of the
N-particle configuration q, with the particles confined
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1-1 ELECTROLYTE SOLUTIONS 249

TasLE 1. The effect of the range of integration on the thermodynamic properties and moment conditions for 1-1 electrolytes in the
HNC approximation. T=298°K, ¢=78.5, 3¢/0T =0.*

C, b —U/NkT Ay Ay
Moles
per liter N=3512 1024 512 1024 512 1024 512 1024
0.1 0.9454 0.9453 0.0268 0.0268 0.560 0.301 3.72 0.067
0.5 0.9921 0.9923 0.4505 0.4503 0.311 0.472 —0.431 0.040
1.0 1.0923 1.0926 0.5456 0.5447 0.067 0.558 —3.63 0.138
1.5 1.2155 1.2159 0.6054 0.6043 0.153 0.631 —3.06 0.261
2.0 1.3616 1.3616 0.6488 0.6488 0.776 0.666 3.17 0.367

2 Ay and A: are defined in Ref. 12. U/NkT corresponds exactly to E®X/ckT of Ref. 12.

to a box of volume V. In Monte Carlo calculations only
rather small values of N can be used. The results re-
ported here were obtained from calculations with
N=32, 64, and 200, afterwards extrapolating against
1/N to 1/N=0. As is usual in MC work, the errors due
to the small values of N were reduced by using periodic
boundary conditions for the (cubic) box of volume V.
Using the method of Metropolis et al.,’ the MC method
estimates (U) by averaging U over an appropriately
distributed chain of configurations. Because of the
symmetry of the model chosen, there are only two dis-
tinct pair functions,

ga(r) =g +(r)=g._(n),
ge(r)=g4 (r) =g (r). (2.2)

Values of these pair functions may be extrapolated to

give the pair functions g4 (a+), gg(a+) at the contact
diameter a of the ions, i.e.,

g(a+)=lim g(a+e),

>0

e>0.

By applying the virial theorem, one may express the
osmotic coefficient in terms of these pair functions. The
osmotic coefficient so derived, ¢,, may be written

corrected. Some new runs have been carried out. These
things have in fact not led to any noticeable changes
from the results reported previously, but the numbers
now reported (in Tables IT and ITI) should be regarded
as a refinement of the earlier data.

III. THEORETICAL RESULTS

The MC results are compared with numerical solu-
tions of the HNC and PYA integral equations, with an
analytical solution of the MSM integral equation, and
with some results of the MEX theory. These theo-
retical results are first discussed in turn.

A. HNC and PYA Equations

The methods of numerical solution of the HNC
and PYA equations have already been described in
detail.! The calculations were repeated for the parame-
ters used in the MC study. As in the previous work the
spacing 7 was 7=0.015¢"', where «~! is the usual
Debye length (i.e., k®*=47e®!N/ekTV). However, the
number, 3, of points used in the numerical procedure
was here increased from 512 to 1024 to minimize the
contributions of the tails of the pair distribution func-
tions g; (7).

¢.— 1= ({U)/3NkT)+CONTACT, (2.3) Because of uncertainties in the asymptot.ic forms of

the pair functions, the effect of the continuation in

where gii(r) beyond r=rn, was ignored. To assess the
CONTACT = (rNa/3V)[ga(a+) +ga(at)], (2.4) resulting error, the HNC equation has been solved with

and N is the total number of ions in a volume V at the
temperature 7. The CONTACT term is again dis-
cussed below.

In what follows (Sec. IV) these quantities are com-
pared with the results of the several different recent
theoretical treatments of the restricted primitive
model (Sec. III). For this purpose the MC data® have
been critically re-examined. The chief alteration is that
in extrapolating the results to 1/N =0, the computations
with only N=16 ions have now been ignored. It
appeared that the dubious results for these very small
systems were distorting the extrapolations; without
them, linear extrapolations appear satisfactory. An
error in the earlier analysis of the results was also

the same spacing 7 and the same number of iterations,
but with 91=>512 instead of 91=1024. The thermody-
namic properties ¢, and U/NET (discussed below)
and the deviations A¢and A; from the zeroth and second
moment conditions™ are given in Table I, for both
values of 9. In each case, contributions to U [cf.
Eq. (3.1) below] and to Ag and A, (defined elsewhere!?)
extended out only to #m.x=0.0159/k, rather than to
r—>o . It can be seen in Table III that the errors due to
truncation of the pair functions are small; in particular,
they are smaller than the standard error in the MC
results.

Since the numerical solution of the integral equations
leads to the pair functions, it is convenient to rewrite
the excess energy U [cf. Eq. (2.1)] in terms of these
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TaBLE II. Comparison of MC results for U/NkT and “CONTACT" with results from the HNC, PYA, and MSM theories, with a=
4.25 &, ¢="78.5, 3¢/aT =0, T=298.0°K.

C® —U/NkT CONTACT
Moles
per liter MC HNC PYA MSM MC HNC PYA MSM
0.00911 0.10294-0.0013 0.1014 0.1014 0.0992 0.0044+0.0007 0.0041 0.0041 0.0017
0.10376 0.2739-£0.0014 0.2714 0.2712 0.2675 0.0359-£0.0011 0.0357 0.0351 0.0203
0.42502 0.43414+0.0017 0.4295 0.4285 0.4264 0.1217+0.0045 0.1228 0.1194 0.0867
1.0001 0.5516-£0.0016 0.5447 0.5418 0.5405 0.277740.0045 0.2741 0.2595 0.2191
1.9676 0.6511-+0.0020 0.6460 0.6376 0.6362 0.5625+0.0088 0.5668 0.5240 0.4878
8 This is the stoichiometric molarity of the electrolyte.
functions, where g°(a+) is the corresponding distribution func-
U - tion at “contact” for uncharged hard spheres at the
— =%K2/ Cga(r) —ga(r) Jrdr, (3.1) same density. It appears that these results (3.4) are
NkT 0 rather unrealistic: In fact the second terms in gs(a+)

where ! is again the Debye length. The CONTACT
term and the (virial theorem) osmotic coefficient ¢,
can again be calculated according to (2.4) and (2.3).
The osmotic coefficient can alternatively be calculated
using the compressibility equation, as discussed else-
where!'; let us call the osmotic coefficient so evaluated,
¢.. While ¢, and ¢. would be identical for an exact
solution of the problem, they will differ for approximate
treatments. The HNC results, ¢,/ 'N¢ and ¢,2NC, and
the PYA results, ¢,5¥4 and ¢.F¥4, are reported in
Tables II and III.

B. MSM Equation

The ‘“‘mean spherical model” leads to an integral

and gz(a-) just cancel each other in (2.4) and so make
no contribution to the CONTACT term of ¢, (2.3).
The CONTACT term is therefore simply that for an
uncharged system. Moreover, the energy term U
would just vanish for the uncharged system, so that
(2.3), (3.3), and (3.4) lead to

G MM = 94 (x2BV /127a3N), (3.5)

where ¢.0 is the (virlal theorem) osmotic coefficient of
the uncharged system.

Waisman and Lebowitz’ have also derived osmotic
coefficients ¢g, in the MSM approximation, from (3.3)
by using the thermodynamic relations,

equation which, for the restricted primitive model, has B(Fex—Fex®) = / Uds, (3.6)

been solved by Waisman and Lebowitz.” It is con- 0

venient to introduce the abbreviation x=«a, and to

define a quantity B, bg—1= M (3.7
dIn(N/V)p’

=— (1/x)[14=x— (142x) 2], (3.2)

In terms of B, the results of the MSM theory may be
written

where 3=1/kT, Fex is the excess Helmholtz free energy,
and the superscript zero again refers to the uncharged
system. This leads to

UMSM/NET = 2BV /4aradN, (3.3)
ga™M(a+) =g (a+)— (e¥/akT) (14 B), Gp"SM ="+ (V /4ra®N)
ge"%¥(a+-) =g%(a+)+ (¢/akT) (1+B), (3.4) X[z (14 20) 12— 2 (14 20)#24+-2].  (3.8)

“TasLE ITI. Comparison of MC results for the osmotic coefficient with the HNC, PYA, MSM, and MEX theoretical treatments. All
a=4.25 &, e=78.5, T=298°K.

Ce
Moles
per liter MO ,HNC ¢ HNC $,FYA . FYA $,MBM g MEM SMEX
0.00911 0.970140.0008 0.9703 0.9705 0.9703 0.9705 0.9687 0.9709 0.9707
0.10376 0.944540.0012 0.9453 0,9458 0.9452 0.9461 0.9312 0.9454 0.9452
0.42502 0.977440.0046 0.9796 0.9800 0.9765 0.9844 0.9446 0.9806 0.9787
1.0001 1.0944-0.005 1.0926 1.0906 1.0789 1.1076 1.039 1.097 1.091
1.9676 1.34640.009 1.3514 1.3404 1.3114 1.3862 1.2757 1.3595 1.342+

8 There is some uncertainty in the last digit.
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The Percus-Yevick compressibility equation has been
used to calculate a ¢° and thus ¢z™5M,

These results can be used to examine the self-
consistency of the MSM results. For the ionic diameter
and concentrations studied, the difference between
¢.0 and ¢0 is small. Hence the difference between ¢,
and ¢z for the restricted primitive model in the MSM
approximation is essentially the difference between the
second terms on the right of Egs. (3.5) and (3.8).
Expanding these we can write

&,M5M =94 (V/4ra’N)

X[—#2*+32t— (5/24)2*+- -+ 1, (3.9)
$EMSM = @04 (V /42N
X (— 34— d4---). (3.10)

The 2® terms give the “limiting law.” We see that
discrepancies occur already in the first term beyond the
limiting law. The compressibility equation for the
osmotic pressure in the MSM approximation leads"
to the same value as it would for uncharged hard
spheres, ¢.M5% = ¢.0.

It may be noted that in the MSM theory 8(Fex— Fex®)
depends on temperature and concentration only
through x=«a [cf. (3.6) and (3.3)]. It is shown in an
Appendix that when this is so,

Iny, —=Iny*+(U/NET). (3.11)

HNC

Fi. 1. MC and theoretical values of the configurational
energy U, CONTACT [cf. Egs. (2)-(4) ], and the virial theorem
osmotic coefficient ¢. The error bars shown for some of the MC
points represent three standard errors; the errors on U are very
small on this scale. HNC, identifies that curve as ¢,HNC—1,
etc. More detailed comparisons may be found in Figs. 2 and 3.
a=4.25 &; e=78.5; T=298°K; O, MC.
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F1G6. 2. Excess energy results. The graph shows only differences

from the MSM predictions and thus displays, on an enlarged

scale, only the differences between the various results. The MC
error bars are again =3 standard errors.

L
0 06

This provides a convenient route between the activity
coefficients and the excess energy U for such systems.
The condition on B(Fex— Fex®) is not met by all theories,
however; for example, it doesn’t apply to the theory of
Stillinger and Lovett.!

C. MEX Theory and y Ordering

Andersen and Chandler, who developed the “mode
expansion” theory®® have applied it to the restricted
primitive model.® In this theory one again considers a
reference system which consists of uncharged hard
spheres, and the Coulombic interactions are regarded as
a perturbation to that reference system. MEX theory
expresses the effect of these interactions on the free
energy as an infinite series of terms (modes) involving
Fourier transforms of the perturbation potential and of
correlation functions in the reference system.

The above specification leaves some freedom in the
choice of the perturbation potential in the physically
inaccessible region where spheres overlap. The choice
influences the separate terms of the mode expansion
series, however, and in a recent development®® this
freedom of choice has been used to ‘“‘optimize” the
convergence of the series. In this version of the theory
it turns out that retention (and optimization) of only
the first term of the perturbation series for the free
energy, and use of the Percus-Yevick approximation
for the reference system, leads to the MSM approxima-
tion. Andersen and Chandler have carried out calcula-
tions which include a second term in the free energy
perturbation, and their results are compared here with
the MC results.

Stell® has demonstrated the close relationship be-
tween MEX and the y-ordering scheme of Stell and
Lebowitz.® The numerical MEX results reported here
for a 1-1 electrolyte are identical to the first-order
results in the y-ordered expansion.
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. Fic. 3. Osmotic coefficient results
compared on enlarged scale, as difference
from the ¢gM8M result. The MC error
bars show three standard errors.

IV. DISCUSSION

The results for the energy U, the CONTACT term
(2.4), and the osmotic coefficient ¢ are compared in
Tables IT and IIT and Fig. 1, and in greater detail in
Figs. 2 and 3. They are discussed below. Then in the
remainder of this section and in Figs. 4-6 some other
interesting features of the results are discussed.

A. Excess Energy

On the scale of Fig. 1, the various excess energies very
nearly coincide. A more detailed comparison is, how-
ever, shown in Fig. 2. (In all of these diagrams and
tables, C, is the molar concentration of the ionic
solute.) The MSM results have been used as a con-
venient base line, and the figure shows the discrepancy
of other results from those of the MSM approximation.
The error limits on the MC results are fhree standard
errors (i.e., a 99.7% confidence limit).

The MSM predictions are not consistent with the
MC results. The PYA theory gives reasonable agree-
ment at the lower concentrations but then deviates
seriously. The HNC results are definitely closer to the
MC results, giving fair agreement over the whole
concentration range, but they appear to be systemati-
cally higher in energy.

B. Osmotic Coefficient

To obtain the osmotic coefficient from (2.3) one
requires, besides the energy, the CONTACT term
(2.4) and thus the values g4(a+) and gz(a+) of the
pair functions at lonic contact. The MC values for
these were obtained by a least squares extrapolation
of g4(r) and gp(r) for values of  only slightly greater
than a; the resulting contact values were subsequently
extrapolated to 1/N=0. The resulting error limits on

CONTACT and ¢ are large compared to those on the
energy.’s The error bars in Figs. 1 and 3 again show 3¢
limits.

Figure 3 shows a detailed comparison of the osmotic
coefficient results, again using an MSM result as a
base line. Both ¢, and ¢. of the HNC theory agree well
with the MC computations over the whole concen-
tration range, and so does the two-mode result of the
MEX theory. The PYA and MSM results for ¢,

=
0.88 7
I N
1 | ] ] | 1 N
02 0.4 06 c|2/3

Fic. 4. Cube-root dependence of the osmotic coefficients for
the restricted primitive model with diameters ¢=3.87 A (upper
curve) and a=2.41 X (lowercurve). The ordinates of the upper
curve are displaced by 0.03. In this range of concentration the
MC, MSM, and HNC results all agree excellently and are pre-
sumably accurate results for the restricted primitive model.
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agree less well, mainly because the CONTACT term
(2.4) is too poorly represented in these theories. We
may recall that in the MSM theory only the uncharged
hard-sphere pair function g'(a+) contributes to
CONTACT; such an approximation becomes worse for
more highly charged ions or lower dielectric constant,
but it improves with increasing ionic size.

The mean ionic activity coefficients v, - may be
obtained from ¢ by integration of the McMillan-
Mayer form of the Gibbs-Duhem equation.! The
deviations of ¢ for the various theories thus reappear in
v+ _; we have therefore not displayed this comparison
here.

C. Cube-Root Dependence

It has been pointed out®! that, at least for 1-1
electrolytes, experimental values of Iny, _ are linear in
the cube root of the concentration over an extensive
concentration range. Such behavior extends typically
from about 0.001M up to 0.05M or higher. It was
suggested by Frank and Thompson®® that this may
correspond to the existence of a “diffuse lattice”
structure, rather than a Debye structure, in this con-
centration range.

The cube-root behavior of Iny, _ implies a similar
behavior for the osmotic coefficient ¢ (although over a
slightly smaller concentration range). Data on ¢ for the
primitive model with two different ionic diameters are
plotted against C,¥3 in Fig. 4. In this concentration
range the results of the HNC, MSM, MEX, and MC

T T T

22t o Monte Carlo

9+ -
.8 —

g(r)
1.4 -
10
Qs4=9-_
1 1 ]
5 7 9 TrA

F1G. 5. Like and unlike pair correlation functions at 1.968M.
The lines show the HNC prediction. A few of the MC points
(N =200 ions) are shown for comparison (=3 standard errors).
Note the charge inversion near r=10 A; the boxed section is
shown, greatly magnified, in Fig. 6.
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1.02 ~
glr)
ry
1.00 o 2 y ~
0.98 _
0.96
1 ! ! ! <
10 12 4 16 rA

Fic. 6. Charge inversion region of Fig. 5 enlarged, with all
the relevant MC points. Some typical error bars are shown,
indicating 1 standard error.

calculations are in close agreement, so any of them
might be used (cf. Fig. 3). The linear regions are
evident and occur in the concentration range observed
experimentally.

Since these curves arise from an accurate treatment
of the primitive model, it is clear that no additional
forces need to be assumed in order to explain the
extensive cube-root behavior. The slopes and intercepts
of these curves are slightly larger in magnitude than
most of those observed!® experimentally.

D. Oscillations in the Ion Atmosphere

Figure 5 shows the HNC and some of the MC results
for the pair functions at 1.968M. The agreement is
excellent.

It is intuitively obvious that the radial charge dis-
tribution must become oscillatory at sufficiently high
concentration. Stillinger and Lovett! have derived a
“second moment condition” that must be satisfied by
the radial charge distribution ga(r) —gz(r); they show
that for the restricted primitive model the condition
can be satisfied only if ga(r) —gs(r) changes sign at
least once, whenever xa>6"2, This represents an upper
concentration limit for the onset of oscillations. Pre-
viously, Kirkwood and Poirier®® had predicted the onset
of oscillations at xa=1.03, while Outhwaite'® gives an
estimate of ka>1.241 for the presence of oscillations.
These estimates are based on approximations of which
the accuracy is not known in the concentration range of
interest.

The existence of oscillations in the charge density
about a given ion has recently been demonstrated for
the HNC solutions for the primitive model of 1-1, 2-1,
3-1, and 2-2 electrolytes.’? For 1-1 electrolytes no
oscillatory behavior in the radial charge distribution
occurs in the HNC calculations up to 0.5M (xa=1.0)
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e X 1

Fi1c. 7. The MSM osmotic coefficients
¢g for the restricted primitive model
(solid line) compared with the values ¢°
they would have if the charges were
removed from the ions (dashed line). The
sets of curves are labeled according to the
ionic diameters.

with the present parameters. A mild oscillation is
noted in the 1.0M (xa=1.4) HNC result, but the MC
values of g(r) are too imprecise to make comparisons.
At 1.968M (xa=1.98), the crossing of the HNC pair
functions is shown in Fig. 5. In Fig. 6 that part of the
pair function curves where charge reversal occurs is
looked at in greater detail. The MC points show data
from a 200-ion simulation. In spite of the statistical
errors in the MC results, the evidence suggests that
these ‘“‘experimental” points do show a charge oscil-
lation, and that it is extraordinarily similar to that
predicted by the HNC calculations.

V. CONCLUSION

Hopefully, one may regard the MC calculations as
giving a good approximation to experimental results
for the primitive model, and if so one can use them to
discriminate between the various theoretical treat-
ments. This is rather demanding, since the theoretical
predictions don’t differ greatly at the low concentra-
tions studied.

Good agreement was noted between the HNC and
MC results over the entire concentration range, and it
seems likely that they are giving a pretty accurate
description of the thermodynamics of the primitive
model of electrolytes, at least for 1-1 ‘“aqueous” solu-
tions. Either method could be used in studying the
effect of modifications to the interionic force law: the
HNC method is much the more economical from the
standpoint of computing time.

The mode expansion (MEX) values of the osmotic
coefficient leave little to be desired. Unfortunately no
energy values are presently available for this theory, so
it is difficult to say how its results compare with those of
the HNC theory, nor has it been possible for us to

check the self-consistency of the osmotic coefficients.®
The PYA and MSM results definitely agree less well
with the MC data, but the MSM equation has the
distinct advantage that its results are available in a
remarkably simple closed form. Moreover the errors in
the thermodynamic properties calculated from the
energy equation are small enough to make the theory
useful for 1-1 electrolytes at least in a qualitative or
semiquantitative sense. The chief drawback is that the
MSM results are available only for spheres of equal
size. In spite of this the MSM theory can be applied
to clarify the roles of some of the competing forces
that are present in real solutions. We consider one
example of this by calculating ¢g for three different
model electrolytes with diameters equal to 2.41, 3.5,
and 6.6 A. They correspond roughly to the distances of
closest approach of oppositely charged ions in LiCl,
CsCl, and Pr,NCl. In Fig. 7 the osmotic coefficients ¢z
for the charged systems are compared with the osmotic
coefficients ¢° that they would have if the charges were
removed. It is apparent that ¢z approaches ¢ as the
concentration increases and with increasing rapidity
as the ionic diameters also increase. In this context we
note that F." forms a strict upper bound on the excess
Helmholtz free energy for charged hard spheres of
equal size.” What is remarkable, however, is that at a
concentration as low as 1M the effect of the charges on
the osmotic coefficients of the model electrolyte with
the biggest ions is almost completely wiped out. We
suggest that qualitatively the same conclusions could
be drawn about real electrolytes, for example aqueous
solutions of some tetraalkyl ammonium halides and
other large uni-univalent electrolytes with ions of
equal or nearly equal size.

In order to test the range of validity of the various
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theoretical approaches, stronger interactions should be
studied. Higher valence electrolytes, both symmetrical
and unsymmetrical, have been under study by the
various techniques, and reports on these studies will
appear.
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APPENDIX

We examine B(Fex— Fex") for some approximate
solution to the restricted primitive model. We assume
that (a being fixed) this quantity varies only through
its dependence on x=«a, as is the case for the MSM
approximation,

6(Fex— Fexo) =f(");

say. Now providing that the dielectric constant e is
independent of temperature,

ke (BC)12,

(A1)

(A2)
where C is the ionic number density, and it follows that:
{0[B(Fex— Fex) J/0 InB}c

={9[B(Fex— Fex") 1/ InC} 5

=N{lny,—Iny%). (A3)
However
{0[B(Fex— Fex®) 1/0B} c={0[BFex 1/3B}c=U, (A4)
so that we obtain the desired result
Iny, =Iny*+ (U/NET). (AS)
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