Fluctuation dominated recombination kinetics with traps
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Theoretical and computer simulation studies of annihilation reactions with traps on two and in
three dimensional lattice systems are reported for the following reactions: (1) Bimolecular
trapping/annihilation: 4 + A »>#, A+ T—Ar; A+ Ar>T; (2) unimolecular
trapping/annihilation: 4 + 4 —* A —»Ay; A + Ay —*. The mean field analysis and
combinatorial calculations of the rate constants given previously for a square lattice are
generalized to lattices in two and three dimensions. It is found that the kinetics of trapped 4 ’s
can be described by mean field theory for bimolecular but not for unimolecular trapping
reactions. The kinetics of free 4 ’s obeys mean field theory at short times, but at longer times
and at low trap densities the free 4 population decays as a stretched exponential when large
density fluctuations dominate the reaction. This stretched exponential behavior of the
Donsker-Varadhan form 4(7) ~exp( — t#/¢“* 2 ), where d is the dimensionality, already
found for the reactant decay in A-A annihilation reactions with traps on a square lattice
[Rasaiah et al., J. Phys. Chem. 94, 652 (1990) ] was tested for universality by studying
triangular and hexagonal lattices in two dimensions (2D) and a cubic lattice in three
dimensions (3D). The same behavior is also observed when the free particle annihilation is
turned off. The effect of a finite staying probability p, on the kinetics of these reactions is also

investigated.

I. INTRODUCTION

Quite recently attention has been focused on the role
that density fluctuations play in governing the kinetics of
diffusion controlled reactions at long times when deviations
from the classical (i.e., mean field) Kinetic equations, which
assume a uniform density distribution, are observed. -5 For
the recombination (or annihilation) reaction

A+ A-x (1.1)
in d dimensions, it is known that at large times®

Aty ~t ~(d<2), A{t)~t 'Int(d=2),

Ay ~t ~(d>2), (1.2)

which implies that mean field behavior for all practical pur-
poses obtains when d>2. In contrast to this the annihilation
reaction

between two distinct species is sensitive to the initial concen-
trations of 4 and B. For instance, when the initial concentra-
tions 4(0) and B(0) are the same, one find that at long
times'"

A(t) ~t ~H(d>4), A(1)~t ~9*(d<4), (1.4)
while if 4(0) < B(0), Bramson and Lebowitz have shown’

A(t) ~exp( — 1) (d>3),

A(t) ~exp( —t/Int)(d =2),

A(t) ~exp( — t2)(d = 1). (1.5)
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In the first instance mean field theory (MFT) obtains for
d>4, while in the second, mean field behavior is observed,
when the dimensionality is greater than or equal to 3.

Another example of fluctuation dominated kinetics is
the catalytic annihilation (*) of particles by a random distri-
bution of static traps:*°

A4+ T->T+ *, (1.6)

Several workers, notably Donsker and Varadhan,” have
shown that the decay of particles at large times is governed
by a stretched exponential'® of the form

A(t) ~exp[ — /¢ +2], (1.7

Grassberger and Procaccia® found that their Monte Carlo
simulations on a two dimensional square lattice with a high
trap density of 0.125 is consistent with this asymptotic form.
However, several other attempts to verify this prediction by
computer simulation in two and three dimensions have
failed because of the statistical sampling problems that arise
in the algorithms that have been employed; for example, the
exact enumeration of random configurations method (ERC
method) is efficient only at very high trap densities."*
Recently'! we have investigated a combination of free
particle annihilation and trapping (permanent immobiliza-
tion) reactions on a square lattice by computer simulation
which shows the onset of stretched exponential DV behavior
at relatively short times. In this paper, we confirm the uni-
versality of this stretched exponential behavior by studying
annihilation/trapping reactions on triangular and hexagon-
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allattices in 2D (D = d) and in a cubic lattice in 3D. We #lso
find the same behavior at low trap densities, albeit at differ-
ent times, when the free particle annihilation is turned off.
This is equivalent to a direct simulation of the Donsker—
Varadhan model.

Il. MODELS OF RECOMBINATION KINETICS WITH
TRAPPING: MEAN FIELD THEORY AND COMPUTER
SIMULATIONS

Two distinct but related reaction schemes were consid-
ered. In one of these (the bimolecular trapping/annihilation
reaction) we start with a static random distribution of nono-
verlapping traps (immobilization sites) and free particles
and allow each free particle to move randomly in each time
step in one of n directions to a nearest neighbor site with
probability (1 — p,)/n, where p, is the staying probability
(the probability of remaining fixed during a time step) and »
is the coordination number of the lattice. Annihilation (*)
occurs in pairs between free and trapped A°’s as well as
between free 4 ’s when they meet at the samessite. Irreversible
trapping occurs when a free particle encounters a fixed trap-
ping site. The elementary steps governing the kinetics are

k ky kr

A+A-%, A+ T-A;,, A+A,.-T. (2.1)
Here k is the rate constant for free particle annihilation while
the rate constants & ;- for trapping (immobilizing) a free 4 or
for the annihilation of a trapped A4 are the same because a free
particle falling into a trap does not know whether it is empty
or not. The recombination of hydrogen atoms on a surface in
the presence of impurities which act as traps is an example of
this reaction scheme. The mean field equations for the rate
process are

d“fi‘t" — — A [KA(t) + kzT(0) ] 2.2)
dI(t) _ —ddr() _
7R re—— krA(®)[T(t) —A47(D)],
2.3)
where we have used the fact that
T(0) = T(t) + A (1). (2.4)

Solving these equations it is found'' that the free particle
density decays as

A()=A(0)e " [1 4+ K(1 —e—*)] ! (2.5)
while the growth A,.(¢) of trapped particles is governed by
Ar () =[T(0)/21{1 — [1 + K(1 —e—*)] 2},

(2.6)
Here 4(0) and T(0) are the initial densities of free particles
and traps, respectively, and x=k,;T(0), K=a/b,
a = A(0)/T(0) and b = k,/k. MFT predicts that the free

particle density 4(z) decays exponentially at long times.
Also, as 1 — o,

Ar() =[T(0)/2][1~ (1 +K) ~*] (2.7)

which implies that 7(0)/2 is an upper bound for A, (t).
The rate constants k and k- for a lattice of coordination
number 7 in any dimension are calculated by an extension of

oiir previous perfect mixing combinatorial argument'' for a
square lattice with the details presented in the Appendix. We
find that, to second order in the density (i.e., neglecting ter-
nary and higher order collisions),
k=(n—1)/n+2p/n— (n+1)p’/n

kT =1 — Ds-

(2.8)
2.9)

Apparently only the rate constant k, and not k-, is a function
of the coordination number ». The rate constants are inde-
pendent of the trap density 7(0) but depend on the staying
probability p,. As expected intuitively, both rate constants
are zero when the staying probability p, is unity.

The computer simulations were carried out on lattices
of size (100< 100) in 2D and a lattice of size (50X 50X 50)
in 3D; periodic boundary conditions being invoked in all
cases. Every free particle was allowed to move in every time
step in one of n directions with probability (1 — p,)/n. The
simulations reported here are mostly for p, = 0 but also in-
clude a few studies with p, #0; the initial density of free
particles 4(0) ranged between 0.1 and 0.5, while the trap
densities 7(0) ranged from 0.001 to 0.5. Averages of the free
and trapped particle densities as a function of time were cal-
culated over several hundred initial configurations of free
particles and traps distributed randomly.

The results of the computer simulations of bimolecular
trapping reactions are compared with mean field theory in
Figs. 1 and 2 and in Tables I and II respectively. The density
of the trapped particles 4,(¢) is seen to obey mean field
theory [Eq. (2.6)] at all times, and the theoretical predic-
tion that no more than half the traps can be filled at an infi-
nitely large time, observed in previous simulations on a
square lattice,'! is also verified for triangular (n = 3) and
hexagonal (n = 6) lattices in 2D and for a cubic lattice
(n = 6) in 3D (see Figs. 1 and 2 and tables I and II). This
implies that the detection and enumeration of filled traps at
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FIG. 1. Simulation results (@ and O) for trapped particle densities at infi-
nite time compared with mean field theory (—) for bimolecular and unimo-
lecular annihilation/trapping reactions on a hexagonal lattice.
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FIG. 2. Simulation results (@ and X ) of both free 4 and trapped 4 (4;)
populations as a function of time compared with mean field theory (—) for
bimolecular annihilation/trapping reactions [Eqgs. (2.5) and (2.6)] on a
2D triangular lattice.

infinite time could be used to determine the initial number of
empty traps. This may be useful in experiments in which the
detection of empty traps is difficult or impossible. In con-
trast to the growth of trapped particles 4, (¢) with time, the
long time decay of free 4 ’s does not obey mean field theory
[Eq. (2.5)], especially when the trap density is small (see

TABLE 1. The ratio 4, ( o0 )/T(0) as a function of 4(0)/7T(0) for bimo-
lecular trapping/recombination reactions when the staying probability
p, = 0; comparison of computer simulation with predictions of MFT.

A)/T(0) TO) A;(0)/T0) (calc) Ay (o0)/T(0)(sim)

d = 2; Triangle lattice (n = 3)

0.2 0.5 0.156 0.154
0.4 0.5 0.252 0.248
0.5 0.5 0.286 0.289
0.6 0.5 0.314 0.316
1.0 0.5 0.388 0.387
1.25 0.4 0414 0.416
2.5 0.2 0.470 0.465
5.0 0.1 0.492 0.499
10.0 0.01 0.498 0.494
50.0 0.005 0.499 0.499
100.0 0.001 0.499 0.499
d = 2; Hexagonal lattice (n = 6)

0.2 0.5 0.155 0.155
0.4 0.5 0.249 0.250
0.5 0.5 0.283 0.290
0.6 0.5 0.311 0.317
1.0 0.5 0.383 0.393
1.25 0.4 0.410 0.416
2.5 0.2 0.466 0.463
5.0 0.1 0.490 0.487
10.0 0.01 0.497 0.495
100.0 0.001 0.500 0.499

TABLE II. Recombination reactions with trapping on a three dimensional
cubic lattice; the ratio 4, ( 0 ) /k ' asa function of 4(0)/k ' for unimolecular
trapping and A7 ()/T(0) as a function of 4(0)/7T(0) for bimolecular
trapping when the staying probability p, = 0; comparison of computer sim-
ulation with predictions of MFT and combinatorial analysis of rate con-
stants.”

Bimolecular trapping/recombination
d = 3; Cubic lattice (n = 6)

A(0)/T(0) T(0) Ar(0)/T0)  Ar(»)/T(0)(sim)
(calc)
1.0 0.1 0.383 0.378
10.0 0.01 0.498 0.493
100.0 0.001 0.5 0.495

Unimolecular trapping/recombination
d = 3; Cubic lattice (n = 6)

A0)/k’ k' b Ar(0)/k’  Ar(e0)/k’(sim)
(calc)*
1.0 0.1 1.05 0.473 0.507
10.0 0.01 1.18 0.889 1.105
100.0 0.001 1.20 0.987 1.406

*For unimolecular trapping on a cubic lattice with p, =0,
k=5/6+k'/3— (1/6)k'% ky =1 —k',and b=6/(5 + 7k’) while for
the bimolecular trapping with p, =0, k=5/6 and k = 1.

Fig. 2). This discrepancy occurs relatively soon and the free
particle density at large times appears to conform to the
stretched exponential behavior predicted by Donsker and
Varadhan for the catalytic annihilation of free 4 ’s. We show
our results in Fig. 4 for triangular and hexagonal lattices in
2D and in Fig. 5 for a cubic lattice in 3D. In Fig. 6 we see that
the onset of this stretched exponential behavior at low trap
densities is modified when the free particle annihilation is
turned off with two or more free particles prevented from
occupying the same site; nevertheless it does occur. In con-
trast to the Monte Carlo simulations of Grassberger and
Proccacia® on a 2D square lattice with a trap density of
0.125, our MD simulations seem to indicate that the
stretched exponential behavior breaks down at high trap
densities.

The DV stretched exponential was also observed in a
related reaction scheme called unimolecular trapping/anni-
hilation (see Fig. 3), in which there are no traps at the begin-
ning, but each particle can be immobilized permanently at
each time step with a probability k ' which corresponds to the
trap density 7(0) in the previous scheme. This unimolecular
immobilization may be envisioned as being due to a confor-
mational change in the diffusing particle. The elementary
steps are now

3%
A+ A r—*

k k'
A+ Asx, A-Ag, (2.10)

The kinetic (mean field) equations for the reaction rates are

d”;(t’) — AW [KAWD + k' + kA (D] (211
i"—;(t—)=A(t)[k'_kTAT(t)], (2.12)
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FIG. 3. Simulation results (@ and X ) of both free 4 and trapped 4 (4;)
populations as a function of time compared with mean field theory (—) for

unimolecular annihilation/trapping reactions on a 2D triangular lattice.
Solutions to Eqgs. (2.11) and (2.12) obtained numerically.

which have the solutions'’
Ar () = (k'7kp){1 —exp[ —kpI(D)]}, (2.13)
A(t) = —2k'/k+ k' exp[ — kpI(D) )/ (k — k)
+ Cexp{ — kI(1) ], (2.14)

where C=A4(0)+2k'/k—k'/(k—k;) and I(2)
= foA(t')dt’. Note the similarity of Eq. (2.13) to Eq.
(2.6). The solutions, which depend on I(?), are not in closed
form, compelling us to solve the differential equations nu-
merically in order to follow the time dependence of the free
and trapped particles. Since the integral J( o ) is positive it
follows that k '/k is an upper bound for A (). At infinite
time (= ), the number of free particles is zero, i.e.,
A( ) =0, which leads, when k #k (i.e., b #1), to the
following transcendental equation:

-2+ [l/(1-B)1Y
+ [4(0)k/k'+2—-1/(1-b)]1Y"* =0, (2.15)

where Y = exp[ — k;I( )] is the root of Eq. (2.15). It is
seen that Yisafunction of 4(0)k /k ' and b. When t— «, Eq:
(2.13) implies that

Ap(0)/k' = (1/kz) (1 — Y). (2.16)

Comparison of Egs. (2.16) and (2.7) shows that the trap-
ping probability £ ' in our unimolecular scheme corresponds
to the trap density 7°(0) in bimolecular trapping/annihila-
tion reactions. -

The rate constants k and k- for unimolecular trapping/
annihilation can also be expressed by Egs. (2.8) and (2.9) if
weidentify k ’ with the staying probability p,,'' when we get a
quadratic equation for k:

(14 n)k% —2nk; + nk =0, 2.17)

which provides an explicit expression for the coupling be-
tween the rate constants and leads to b=k, /k
=n/[(n—1)+k'(n+1)]. Figure 1 shows that the
agreement between the mean field calculations [Eq. (2.16) ]
and simulations of 4, ( « )/k ' for unimolecular trapping on
ahexagonal lattice is limited, unlike bimolecular trapping on
the same lattice. More detailed comparisons for triangular
and hexagonal lattices in 2D and a cubic lattice in 3D are
provided in Tables IT and III. Also Fig. 3 shows the depar-
ture of both A(¢) and 4,(¢) from MFT in a unimolecular
trapping reaction on a triangular lattice when k' = 0.01. It
appears that this always occurs, in unimolecular trapping
reactions on any lattice, except when k ' is Iarge (see Fig. 1).
However, DV behavior of the free particle decay is observed
in all cases. The stretched exponential decay of free particles
in bimolecular and unimolecular trapping/annihilation re-
actions on a cubic lattice (d = 3) for thesame value of k ' and
T(0) are compared in Fig. 6. '

As observed earlier, the rate constants k and k- given in
Egs. (2.8) and (2.9) (see the Appendix for the derivation)
depend on the staying probability p, : If we differentiate Eq.
(2.8) with respect to p, and set the result equal to zero, we
get the optimal value of p, for which k is a maximum -

[ e
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FIG. 4. Stretched exponential DV behavior of the decay of free particles in bimolecular annihilation/trapping reactions on triangular and hexagonat lattices

in 2D. Note DV behavior obtains for low but not high trap densities.
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FIG. 5. Stretched exponential DV behavior of the decay of free particles in
bimolecular and unimolecular annihilation/trapping reactions in a cubic
lattice in 3D.

pt=1/(n+1) (2.18)
k*=(n—1)/n+1/[n(n+D]. (2.19)

The effect of the staying probability p; on the kinetics of
trapping/annihilation reactions by computer simulation has
also been studied by us; the results for bimolecular trapping/
annihilation reactions on a 2D triangular lattice are shown
in Fig. 7. When A4 (¢) decays at its maximum rate, 4(0)/4(¢)
will be largest. It is seen that the simulation results agree
qualitatively with the prediction of Eq. (2.18). Similar be-
havior was also found for unimolecular reactions.

Ili. DISCUSSION

Our analysis indicates that the perfect mixing mean field
description of trapped 4 ’s in bimolecular trapping reactions
on triangular and hexagonal lattices in 2D and on a cubic
lattice in 3D agrees very well with the simulation results.
However, agreement of trapped 4 ’s with mean field theory is
found only for large trapping probabilities k * in unimolecu-

Rasaiah et a/.: Fluctuation dominated recombination kinetics

lar trapping reactions. The explanation of this difference be-
tween unimolecular and bimolecular reactions is that, unlike
unimolecular reactions, the traps in bimolecular trapping
reactions are static and are uniformly distributed. This leads
to an absence of fluctuations in the density distribution of
trapped 4 ’s which ensures that their evolution obeys mean
field theory.

We have identified &k ' with p, in our mean field analysis
of unimolecular trapping reactions. The difference between
the two is that the rate constant k' causes a particle to be
trapped permanently with probability k', whereas the trap-
ping probability p, immobilizes the particle only for one time
step. However, our derivation of the kinetic rate constants
includes no memory effects which distinguish between k'
and p, which may contribute to the discrepancy between our
mean field calculations of the trapped particle density and
the simulations. Another explanation for the failure of the
mean field theory in unimolecular trapping reactions is that
there may be correlations between trapped 4 ’s which are
neglected in the derivation of the rate constants.

For both bimolecular and unimolecular trapping/anni-
hilation reactions the free 4 population deviates rapidly
from mean field theory when the trap density 7(0) or the
trapping probability k' is small. This is in accord with our
earlier observations of annihilation reactions with trapping
on a square lattice'' in two dimensions and can be under-
stood by noting that a high trap density (or large k') will
reduce the fluctuations in free 4’s. When the trap density
T(0) is low or k' is small, the discrepancy between mean
field theory and the simulation results for 4(¢) grows with
increasing time (see Figs. 2 and 3), and mean field theory
eventually fails completely. Thus, fluctuations of free 4°’s
become dominant at long times when the density of traps or
the value of k£’ is small.

Our most important observation is the universality of
the stretched exponential found earlier for a square lattice,"'
and in the present paper in both bimolecular and unimolecu-
lar trapping reactions on a variety of lattices in 2D and 3D.
The question is why do both bimolecular and unimolecular
trapping reactions have the same asymptotic behavior as
that of simple trapping reactions? We know that the

|
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no fp annihilation
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FIG. 6. Stretched exponential DV behavior of the decay of free particles for trapping reactions on hexagonal lattices in 2D and in a cubic lattice in 3D in the
absence of free particle (fp) annihilation. Note that DV behavior obtains for low but not high trap densities.
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TABLEIII Theratio 4 - ( o0 ) /k ' asa function of 4(0) /k ' for unimolecular
trapping reactions when the staying probability p, = 0: comparison of com-
puter simulation with predictions of MFT and combinational analysis of
rate constants.

Ak k' b Ap(w)/k' (cale)®  Ap(w)/k’(sim)

d =2; Triangular lattice (7 = 3)

0.2 0.5 0.75 0.172 0.176
04 0.5 0.75 0.304 0.31
0.5 0.5 075 0.361 0.371
0.6 0.5 0.75 0.412 0.423
1.0 05 075 0.576 0.589
1.25 04 0383 0.616 0.635
2.5 0.2 1.071 0.749 0.789
50 0.1 1.250 0.863 0.946
10.0 0.01 1.470 0.913 1.163
50.0 0.005 1.485 0.989 1.380
100.0 0.002 1.494 0.989 1.388
d = 2; Hexagonal lattice (n = 6)
0.2 0.5 0.706 0.172 0.173
0.4 0.5 0.706 0.303 0.31
0.5 0.5 0.706 0.359 0.367
0.6 0.5 0.706 0.409 0.418
1.0 0.5 0.706 0.571 0.580
1.25 04 0.769 0.608 0.628
2.5 0.2 0937 0.730 0.784
5.0 0.1 1.052 0.837 0.963
10.0 0.01 1.183 0.888 1.316
100.0 0.01 1.198 0.98 1.987

#Calc from Eq. (2.16) in which Yis obtained as the solution to Eq. (2.15)
assuming kr=1—k', k=n—1/n+2k'/n—(n+1/n)k"? and
b=ky/k =n/[n—1+ (n+ DK'].

Donsker-Varadhan’ mechanism for the observation of a
stretched exponential requires large areas totally devoid of
traps. This can be realized at low trap densities in bimolecu-
lar trapping reactions and small values of the trapping prob-
ability k' for unimolecular trapping reactions. In the long
time limit, when the density of the free 4 ’s is very low, the
annihilation of free particles becomes relatively unimpor-
tant. There is then no difference between the bimolecular
and unimolecular reactions, between trapping annihilation
reactions and simple trapping reactions and, in the long time
limit, the only process observed will be the - diffusion of
free A ’s among the sparsely distributed traps. The decay of
free A’s in all of these cases should show similar asymptotic
behavior which depends on the dimensionality. In this way
the universality of the stretched exponential can be under-
stood.

The relatively rapid cross over from mean field behavior
to stretched exponential decay of the Donsker—Varadhan
form observed by us is in sharp contrast to the very slow
approach to DV behavior predicted or observed by other
workers. For example, the survival probability at which DV
behavior sets in is calculated by Fixman'? as 10~ or less
for d = 3, whereas Klafter et al.'® obtain 10~2' ford =2
and Havlin ef al."* estimate 10~ '* or less for d =2 and
d = 3. In our A-A annihilation/trapping simulations, cross-
over from mean field behavior to DV behavior is observed at
asurvival fraction of about 10! (or larger) ford = 2 atlow
trap densities, and our results (Fig. 3) for d = 3 are quite
similar to the two dimensional case (in d = 3 the DV expo-
nent is 3/5) except that the crossover occurs when the sur-
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vival fraction is much smaller ~ 10 ~2. This will not be diffi-
cult to understand if we notice the fact that annihilation
among free particles will enhance the decay process. It
should be emphasized that our kinetic scheme of trapping
with free particle annihilation differs from that assumed in
the DV model, and, furthermore, our simulation method,
unlike some; allows for spontaneous density fluctuations as
the reaction proceeds since every particle has a finite proba-
bility of moving in every time step. With free particle anni-
hilation turned off in the bimolecular scheme, the DV model
is recovered and the stretched exponential is observed at a
low trap density (see Fig. 6) with a longer induction time.
We conclude with a few comments concerning the diffi-
culties associated with a simulation of this type. It is well
known that DV asymptotic relaxation is due to the existence
of large trap-free voids which occur with an exponentially
small probability, and that it is the balance between the long
lifetime in such a void vs the small probability of finding this
void which produces the DV stretched exponential. It has
also been shown that the relative mean square fluctuation in
the density of free particles strongly diverges at large times,’
and we suspect that this condition holds for the higher mo-
ments as well. This would imply that the probability
P(N,,t) of N, particles surviving at time ¢ is very broad and
pathological at long times. In other words, configurations
with several particles in a trap-free void are just as relevant
statistically as a single particle in such a void, and this im-
plies that a very large number of particle-trap configura-
tions are necessary to produce the cross over from mean field
behavior to the DV asymptotic form. In our opinion, ade-
quate sampling in this simulation is much more important
than finite system size effects so long as the system is large
enough so that only a few periodic images can be explored by
a random walker before it is trapped. Although our “pure
simulation technique” could lead to simple exponential de-
cay at sufficiently long times due to periodic boundary con-
ditions'* we have taken care to choose a sufficiently large

200

Bi, n=3
> A(0)=0.1
< T(0)=0:001 ps=1/4
=
e
<
100 1

/500

FIG. 7. Plots of A(0)/A(¢) vs ¢t for bimolecular trapping reactions with
different staying probabilities on a 2D triangular lattice. The maximum rate
occurs at p; = 1/4 in agreement with the prediction of Eq. (2.18).
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lattice size, along with free particle and trap densities so that
the periodic image artifact is not observed. While a scrupu-
lous study of system size effects is desirable, we feel that
these novel observations of both perfect mixing mean field
kinetics and DV stretched exponential behavior are statisti-
cally valid, with significant implications for diffusion limited
chemical recombination kinetics in heterogeneous (trap-
ping) media.
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APPENDiIX. COMBINATORIAL CALCULATION OF THE
RATE CONSTANTS WITH A STAYING PROBABILITY p,

The details of the calculation for square lattice has been
given in Ref. 11. Here we generalize our results to any lattice
type with no limit to the dimensionality. We use A4(¢),
A, (1), and T(1) to represent the normalized densities or the
probabilities of the free 4, trapped A4, and traps at time ¢, and
n to represent the coordination number of a site. We will
focus our attention on a central site and calculate the change
in probability for a site to be occupied in two successive time
steps. We consider different arrangements of free particles
adjacent to the central site at time 7 and calculate all contri-
butions to the probabilities of occupation at time ¢ + 1. At
time ¢, we assume A4 (?) is the probability for a central site to
be occupied by a free particle 4. Because each particle has
been assigned a staying probability p,, the net probability of
amove will be (1 — p, ). When two or more particles occupy
the same site simultaneously, annihilation occurs in pairs.
The probabilities 7, for the central site to be occupied by a
free particle at time ¢ 4 1 are calculated for the following
initial configurations at time #:

(1) A free particle is at the central site and all neighbor-
ing sites are erapty:

() I, =pAD)[1—-4(D]" (A1)

Here the region enclosed in parenthesis represents a central
site and “he dot represents a free particle.

(2 ) The central site is either empty or occupied by a free
A and a neighboring site is occupied by a free 4:

(eI, =(1—pHrAan[1 —A4()]"— T(0)
X(1=p)A®[1—-A4]" ",
(o) I'1 = [p,(n—1+p,)

+(1—p)* A0 [1 —4®)]"
(A3)

(A2)

Rasaiah et al.: Fluctuation dominated recombination kinetics

(3) The central site is either empty or occupied by a free
A and each of two neighboring sites are occupied by a free 4:

o( o L=[(n—1)/n](1 -p)(n—1+p,)
XA [1 —A(H]1" ' = T0)[(n —1)/n]
X(1—p)(n—14p)AD?[1—A()]"2,

(A4)
o(e)e I; =[(n—1)/2n][p,(n—1+p,)?
+2(1—p)(n—14p))]
XA [1—A(£)]" 2. (A5)

We need not consider the other configurations with three or
more particles in the neighborhood of a central site since
they give rise to terms beyond 4(#)? and T(0)A(¢) in the
calculation of 4(¢ 4 1). Thus we have

A+ D=L+ L+Ii+L+15+ (A6)

Substituting (A1)-(AS) into Eq. (A6) and keeping only
the terms to orders 4(¢)? and T(0)A4(¢), we find

A+ 1)
=AW +{~-n+[p,(n—14+p) + (1 —p)?]

+ [(n—1)/n}(1 —p,)(n — 1 4 p,) }A(2)?

—T(0)4()(1 —p,). (AT)
Comparing Eq. (A7) with Eq. (2.2) we have
k=n—[p(n—14+p)+ (1—-p)?]
—[(n—=1)/n](1 —p)(n—1+p))
= (n—1)/n+2p,/n— (n+ 1)pi/n, (A8)
kr=1—p,. (A9)
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