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The equilibrium properties of charged hard spheres with adhesive interactions between
oppositely charged ions are studied in the hypernetted chain/mean spherical (HNC/MS)
approximation and in the Percus—Yevick/Mean spherical (PY/MS) approximation which are
solved analytically. Numerical solutions to the hypernetted chain (HNC) approximation for this
model are also compared with the HNC/MS approximation for a model 2-2 electrolyte in the
preparative concentration range. The effect of adhesion on the low density phase transition of the
primitive model electrolyte is found to be slight in contrast to the effect of charge on the phase
separations at high densities of a two component mixture of hard spheres in which there is
adhesion only between molecules of different species.

I. INTRODUCTION

The properties of adhesive hard spheres have been dis-
cussed by Baxter' in the Percus—Yevick (PY) approximation
and Waisman and Lebowitz? have studied the restricted
primitive model (RPM) for charged hard spheres in the mean
spherical (MS) approximation. In this paper we investigate
adhesive charged hard spheres when adhesiveness is present
only between oppositely charged ions at contact. We have
recently investigated electrolytes®>* in which oppositely
charged ions can form a bond at a distance L, where a/
3<L<a/2 and a is the diameter of the ions. The present
model differs from the previous ones™* studied by us in that
there is no steric hindrance to polymerization. Of the ap-
proximations that we use in our work, the HNC (hypernet-
ted chain) approximation is solved numerically and the hy-
pernetted chain-mean spherical (HNC/MS) approximation
and the Percus—Yevick-mean spherical (PY/MS) approxi-
mation are solved analytically. In the HNC/MS approxima-
tion, the adhesiveness at contact is treated in the HNC ap-
proximation while the remaining interactions are treated in
the MS approximations. In the Percus—Yevick-mean
spherical (PY/MS) approximation, the PY approximation
replaces the HNC approximation for the adhesiveness
between oppositely charged ions. The analytic solutions that
we obtain for the HNC/MS and PY/MS approximations are
found to bear a close resemblance to the solution of the mean
spherical approximation for the restricted primitive model
electroiyte.

There are several interesting problems that can be ex-
plored with this model. When the charges on the ions are
turned off we are left with a mixture of two species in which
there is adhesion between the different species A and B but
not between the A’s or the B’s alone. We study the phase
transition for this system in the PY approximation and ob-
serve the changes that occur in the phase diagram when
charges of opposite sign are added to the A’s and B’s, respec-
tively, keeping the solution electrically neutral (the charge—
charge interactions are treated in the MS approximation).

* Permanent address: Department of Chemistry, University of Maine,
Orono, Maine 04469.
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This transition is found to occur below a definite critical
temperature at moderately high densities (7 = mpa®/6 = 0.3
where p is the total density). In contrast to this there is also
evidence for a low density (¢ = 0.008) phase transition in the
RPM electrolyte.® We explore this in the MS approximation
before and after adding stickiness (treated in the HNC ap-
proximation) to the oppositely charged ions. We find that the
addition of charges to the A’s and B’s shifts the high density
critical point and the coexistence curve of the sticky A-B
transition, while the introduction of adhesion of comparable
strength to oppositely charged ions has only a slight effect on
the low density phase transition of the restricted primitive
model electrolyte.

The Mayer f function for the interactions between the
ions is given by

fifdr) = &a(l —5,,)8(r —a)/12 — 1 (1.1a)
=exp[e;e;/(€kTr)] —1 (r>a), (1.1b)

where r is the distance between the ions / and j, e is the
charge on ion J, a is the diameter of the ions, & is the dielec-
tric constant of the solvent, §;; is a Kronecker delta, and
8(r — a) is a delta function. The parameter £ is the sticking
coefficient which measures the strength of the bonding or
adhesiveness between unlike ions ( + , — ); it is the inverse of
the parameter 7 used by Baxter® in his study of adhesive hard
spheres. When & = O the system is identical to the RPM elec-
trolyte. Turning on the adhesiveness alters the Mayer f
function for unlike ions and a variation 8¢ in the sticking
coefficient causes a corresponding variation in the f func-
tion:

Of;(r) = ad& (1 — 8,,)8(r —a)/12. (1.2)
To obtain the Helmholtz free energy A of this sticky (or
adhesive) electrolyte model (SEM) we consider the func-
tional derivative of the free energy with respect to f;(r)
which is

8(BA/V)/EfyrnE)= —imy,nE), (1.3)
where the cavity function y,;(r,§ ) is related to the distribu-
tion function g;;(r) = 1 + A;;(r) by

gij(”§)= [1 +f;‘j(r!§)]yij(r’§)’ (1.4)

(0<r<aj,
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in which we have explicitly included the functional depen-
dence on {. Combining Eq. (1.2) and Eq. (1.3), integrating
over r, and summing over / and j we find that

¢
B[4 (SEM) — 4 (RPM)]/N = —éﬂfo N O

(1.5a)

Differentiating with respect to p we get the pressure differ-
ence

[P (SEM) — P(RPM)]/pkT

3
— =2 [ [re g0y, Va0 e

(1.5b)

The osmotic coefficient ¢ = P /pkT.

The delta function in the Mayer f function for oppo-
sitely charged ions implies the presence of a delta function in
the correlation functions for oppositely charged ions with a
different coefficient A called the association parameter. The
correlation function 4, (r) for 7 < a has the form

h= —1+ak(1—6,)80r—a)/12 (r<a). (L6)

The average number (N ) of ions of opposite sign bonded to
an ion is given by (N ) =74 and the reduced association
constant

K=— ™" ___
31— (NP

Chemical association between uncharged molecules A and
B, where binding occurs at distances » = a/2 and r = a/3,
has been discussed by Cummings and Stell,® and the defini-
tions of (N ) and K used here are the same except that they
are specialized to adhesiveness or bonding at contact. The
sticking coefficient is related to the association parameter by

A=8y, _(af) (1.8)
which follows from Egs. (1.2}, (1.4), and (1.6}. The function
Y+ - (a,§) is determined by the approximation (HNC or
PY) used for the adhesiveness at contact. It follows from this
that Eq. (1.5a) for the free energy of adhesive charged hard
spheres can also be written in the form

(1.7

B4 (SEM) — 4 (RPM)l/N

= —[1—1ny+_(a,ﬁ)]—vj; Iny, f(@d’)di’,
(1.9)

where v = 74 /2. For an uncharged system this is equivalent
to determining the free energy by integration over the in-
verse temperature. Watts ef al.” have shown that the thermo-
dynamic properties determined through the virial and com-
pressibility equations are very different from those
determined from the energy equation when the PY approxi-
mation is employed for adhesive hard spheres. However, we
determine the free energy differences between charged and
uncharged adhesive hard spheres using Eqs. (1.5a) or (1.9).
These equations are known to yield good results* for sticky
electrolytes in the preparative concentration range when the
HNC/MS approximation is used and the stickiness occurs at
a distance less than the molecular diameter. We have no

corresponding information on the PY/MS approximation at
liquid densities so the accuracy of our results for the phase
transition at these densities should be treated with caution.
However, our estimates of the shifts in the critical param-
eters on adding charge may be more accurate than the abso-
lute values themselves. The chemical potential p in the SEM
is given by

1(SEM) = 4 (SEM)/N + P(SEM)/p . (1.10)

The phase diagrams were determined from an analysis of u
vs Pand Pvs {.

In Sec. IT of this paper we discuss details of the solution
for adhesive charged hard spheres in the HNC/MS and PY/
MS approximations. The results for these approximations
and for our numerical solutions to the HNC approximations
are presented and discussed in Sec. III.

Il. THE SOLUTION FOR ADHESIVE CHARGED HARD
SPHERES IN THE HNC/MS AND THE PY/MS
APPROXIMATIONS

As discussed elsewhere,>* the Ornstein-Zernike equa-
tion for a symmetrical electrolyte can be written as two sepa-
rate equations for the sums and differences, respectively, of
the correlation functions:

hslr) = cs(r) +p f es(slhs{lr — ) s, (2.1a)

holr) = elr) —pfcp(s)hpur _s)ds, (2.1b)
where

est) = [c, (1) +canali]/2, (2.2

eolr) = [es () =y 1 (1)/2 2.3)

are the sum and difference functions of the direct correlation
functions ¢, ;(r) and hg(r) and A, (r) are defined similarly. For
the model considered here we have the exact relations

he(r)= — 1 4+ aldb(r — a)/24 (r<a), (2.4)
hp(r) =add(r —a)/24 (r<a) 2.5)
which follow from Eq. (1.6). In the MS approximation
(=0 (r>a), {2.6)
cplr) = €*/(ekTr) (r>a), 2.7

where €, is the dielectric constant of the solvent background,
and e is the magnitude of the charge on the ions.®

Baxter® has shown that Wiener—Hopf factorization of
Eq. (2.1a) leads to the pair of equations:

restn) = gsin) + 20 [~ a3lelastr — ), 2.8)

rhslr) = g51r) + 2 [ aslelr — 1 hllr — 11)dt 12.9)

where g5(r) is zero for 7 < 0. The MS closure [Eq. (2.6)] insert-
ed in Eq. (2.8) shows that g4(r) = O for 7> a. The integrated
form of Eq. (2.9) is

Js(r) = gs(r) + 27p f dtgs(t)Js(|lr—t¢}), r>0,

(2.10)
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where Jg(7) is defined by

Jslr) = f the(t) dt . (2.11)
Since Jgla — )= Jsla + )+ Aa*/24, it follows from Eq.
(2.10) that

gsla — ) = Aa*/24, (2.12)

where we have made use of the fact that g¢(r) = 0 for r > a.
When 0 < 7 <a, the solution to Eq. (2.9) is

gs(r)=4r+C, (2.13)
where
A=1-— Zﬁpqu(t)dt, 2.14)
0
C= 27prtqs(t)dt. (2.15)
0

Integrating Eq. (2.13) and applying the boundary condition
(2.12),

gs()=A(P—a*)/24+C(r—a)+Aa*/24, O<r<a.

{2.16)

Substituting this into Eqgs. (2.14) and (2.15) we find
A=(1+42g—p/(1-7P, (2.17)
C'=C/a=(p—3n)/[2(1-7¥], (2.18)

where u = v(1 — ) and v = 94 /2. When 4 = 0 the coeffi-
cients A and C’ are identical to those for the PY equation.’
The contact value of Agla + ) follows from the Eqgs. (2.4),
(2.9), and (2.16):

hsla +)= — 1+ D+ vi /24, (2.19)

where D=A(1—v/2)+C'(1—v)=m—ni with
m = (1 4+ 7/2)/(1 — 77)* and n = /[2(1 — 7)]. The function
¢s(r) for 0 < r < a, obtained from Eqs. (2.8) and (2.16), is given
by

cs()= — A, — 69dx —igA,x> —vi /(24x) (O<r<a),
(2.20)

where x =r/a, A, = (1 + 25 —p)(1 + 29 — nu)/(1 — n)%,
Ay = — 249 —p/41 —7), and Ay =A%
=(1+29—pu)?/(1—7n)*. A delta function equal to
Aab(r — a)/24 should be added to Eq. (2.20) if the range of  is
extended to r =a. The expression reduces to the PY re-
sult'®! when 4 = 0.
The solution to the difference equation follows from an
extension of Baxter’s analysis to electrolytes.'>'> It is as-
sumed that

(2.21)

where c3(7) is a short range function and z is a convergence
factor. Wiener—Hopf factorization of the difference equation
(2.1b), followed by the limit 2—0 leads to the pair of equa-
tions

red(r) = g% (r) + 27p [Mq% 0~ [ draieradie— r)] ,
(2.22)

cplr) = S (r) + €* expl — zr)/(€kTT),

rhp(r)

= %'(r)+21rpf dt [5() + M ](r = Dhollr —1]),

(2.23)

where ¢%(r) = O for r <0, M is related to the inverse Debye
length « by

M= —x/(2p) (2.24)
and &% = 4mpe*/(€, kT). In the MS approximation,
(=0 (r>a) (2.25)

which implies that [see Eq. (2.22)] ¢2(r) = O for »>a. The
upper limit of integration in Eq. (2.22) is therefore a + .
The integrated form of Eq. (2.23) can also be written as

®©

ol = —g3ir) = M/2+2mp f XA
(1]

X(]r——tl)dt—erJD(t)dt, (2.26)
where J,(r) is defined by
Jplr) = J.w thy(t)dt. (2.27)

In arriving at Eq. (2.26) we have made use of the electroneu-
trality condition which is equivalent to the relation’

1 =47Tpf Jplt)dr.
(o]

The presence of a delta function in A (r) distinguishes
Jpla + ) from Jya —):

(2.28)

J=Jpla—)=Jpla+)+ Ad*/24, (2.29)
and it follows from Eqgs. (2.26) and (2.29) that
go()= —kir —a)J —Aa*/24 (O<r<a). {2.30)

Using this in Eq. (2.26) with » = a, we find a quadratic equa-
tion for J:
apa*k J* — (v +ka + 1) J + (ka + 2v)/(4mpa) =0, (2.31)
whose solution is

J=(14v+«a)— [(1 + v/ + 2xa]"*/(1279xa) , (2.32)

where v = 74 /2 and the negative sign in front of the square
root ensures that solution to the RPM in the MS approxima-
tion is recovered when A = 0. The similarity of our results to
the MS-RPM solutions is striking even when A4 #0.

The function ¢, (#) for 0 < 7 < a follows from the solution
to Eq. (2.22) and Eq. (2.21) with z = 0. We find that

cplr) = kI (1 —mp Jr) + Ava/(24r) (O<r<a)
=e%/(€, kTa)[2B — B*x] + Av/(24x) (0<r<a),
(2.33)

where x = r/a, B = 2mp Ja. If we extend the range of r to
include r = a a delta function equal to Aad(r — a)/24 must be
added to the expression for ¢ (7). The contact value i@ + )
follows from Eqgs. (2.23) and (2.30):

hpola+)=chla—)=e*B — 1)*/(e, kTA) — Av/24, (2.34)
where we have used the quadratic equation (2.31) in the form
ka(B— 1 =2B(v+1)—2v (2.35)
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to simplify the algebra. It is readily verified that 4, (r) — ¢ (r)
is continuous at = a. The distribution functions g, ,(a +)
and g, _{a+) at contact [see Eqgs. (2.19) and (2.34)] are
found to be

g..la+)=D—é1—B)/(e kTa)+vA /12, (2.36)
g._(@a+)=D+ ¢l —B)/e, kTa). (2.37)

This completes our analysis of the charge—charge interac-
tions for this model treated according to the mean spherical
approximation. When 4 = 0 the solutions to the MSA for
the RPM are recovered. When A = 1/77 we have the solu-
tions in the MSA for adhesive hard spheres in which, on the
average, every ion is bonded to at least one other ion of oppo-
site sign.

We next consider approximations for the adhesiveness
at contact between oppositely charged ions when there is a
mixture of free and associated ions (0 <A <1/7). Since
& =1/1, Eq. (1.8) is equivalent to

Ar=y, _f{a+). (2.38)
In the PY/MS approximation,
Ar=g, (a+)—ci_(a+)
=g, _la+)—e/le, kTa)
=D+ (B?—2B)/(e, kTa), (2.39)

which leads to the following cubic equation for v:

(2c — 41V + (¢* + 2b — 6 — 2x* + (2bc — 4 — 4xv

+b2—-2x—1=0, (2.40)

where
b=1+692+75)/(1 —9f+(2x —x*/2, (2.41)
c=(—24r—1l4n+2)/(1 — 7). (2.42)

The smallest real solution corresponds to the one obtained
when the charge is zero (when the cubic equation becomes a
linear equation) and is taken as the physically relevant one
for this approximation. In the HNC/MS approximation

Ar=explh, _([@a+)—ci_(a+)]
= exp[D + ¢*(B* — 2B)/|e, kTa) — 1] (2.43)
which is solved for A iteratively. Again the smaliest real solu-
tion is taken as the physically relevant one. The free energy
difference between the adhesive or sticky electrolyte model is
calculated from Eqgs. (1.5) or (1.9); in the HNC/MS approxi-

mation the integration is easily done analytically and we find
that

B[ A(SEM) — 4 (RPM)]/N = — 5 I(HNC/MSA)/2,

(2.44)
where
2 2 3
IHNC/MS) =4+ -4~ _ A~ _ 2
1—-n) 24 T2
2 1/2
A2 P22 oy
367°
1/2
yUu+20" (2.45)

187?
In the PY/MS approximation the integrations in Egs. (1.5)

or (1.9) have to be done numerically. However, to use these
expressions we need the Helmholtz free energy of the RPM
electrolyte in the MSA which, from the analysis of Waisman
and Lebowitz,? is known to be
B[A(RPM) - A°/N

=[ —6x+3x*+2—2(142x"2]/(729) .
The pressure in the MS approximation is
BIP(RPM) — P%/p

[3x 4+ 3x(1 4+ 2x)"2 + —2(1 + 2x)/2 + 21/(727),

(2.47)

In Eqgs. (2.46) and (2.47) the superscript zero refers to the
properties of the hard sphere system in the Percus—Yevick
approximation, but we use the Carnahan and Starling'*
equation which is more accurate for the pressure and free
energy of hard spheres:

BP°/p=(1+n+n*—7)/(1 -9, (2.48)

BA°/N =1In7n + 94 —3n)/(1 —n)*. (2.49)

The excess energy of adhesive electrolytes is given by*

BE*/N=(N)dWInr/dInB)/2 —xkaH'/2, (2.50)
where
H' =Jyla+)a

= {(1+¥) +Ka(l — v) — [(1 + ¥ + 2a] 2} /(127) .

(2.51)

In the saturation limit (N ) =An =1, v=1/2, and

H' =[3/2 4+ «xa/2 — (9/4 + 2xa)"'?1/(129) . (2.52)

At zero charge the adhesive electrolyte becomes an ad-
hesive (or sticky) nonelectrolyte (SN) and the mean spherical
approximation for the RPM electrolyte becomes identical to
the Percus-Yevick approximation for hard spheres. It fol-
lows from Egs. (2.43) and (2.39) that the free energy differ-
ence between the sticky nonelectrolyte (SN) and hard
spheres (HS) can also be obtained analytically in the HNC/

PY approximation and in the PY approximation. We find
that: (a) in the HNC/PY approximation,

(2.46)

/{2
s 77)] , (2.53)

where A7 = exp[D — 1]. Differentiating with respect to the
density and taking note that, for the SN system,
di_ [5+n—a(—n)]
dp  2l—nP +An(l—qP’
the pressure in the HNC/PY approximation is given by

BLA(SN)—A°]/N = —%[ﬂ-{-

(2.54)

BP—P) _ Af2—m)

41 —mn)

n 17/1[2+77(/1—2)][5+17—/1(1—77)]].
41— +2(1—9P

in [/l+

(2.55)
{b) In the PY approximation, A7 = D and we find
BLA(SN)—4°YN= -T2 1nﬂ3:n_""_) . (2.56)
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FIG. 1. Plots of A and (N') as a function of concentration for the adhesive
charged hard sphere 2-2 electrolyte. The temperature T=298 K,
€, =78.358, a=42 A, and the inverse of the sticking coefficient
7=0.91X1073.0 and O: HNC approximation,—HNC/MS approxima-
tion.

A _ Am+2n+5—-A(l—7)]
dnp  (1=9)[2+n—2491~-7)?
and
BP—PY) _ _ [1 (1 ﬁ) _m__
P =7 " +m +n(1+n/1/m)
1@
(1+nA/m) dy
where s = (9® + 49 — 2)/[%*(n — 1)*], and n and m are de-
fined below Eq. (2.19).

(2.57)

(2.58)

34 HNC—RPM

— Eex
NKT

0.0 05 1.0 1.5 2.0
Cst

FIG. 2. E<*/NkT asafunction of the concentration in the HNC and HNC/
MS approximations for the RPM and the adhesive charged hard sphere
model. O: HNC approximation;—HNC/MS approximation. (See caption
of Fig. 1 for details of the molecular parameters.)
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4
31
AA X
NKT
14
0 —- v
0.0 0.5 1.0 1.5 2.0

Cst

FIG. 3. A4 **/NKT as a function of the concentration for the RPM and the
adhesive charged hard sphere model in the HNC/MS approximation.
A = SEM-RPM. (See caption of Fig. 1 for details of the molecular param-
eters.}

NIl. RESULTS AND DISCUSSION

Our calculations explore three systems that are related
but exhibit different equilibrium properties:

(a) A model 2-2 electrolyte with adhesiveness between
oppositely charged ions (HNC and HNC/MS approxima-
tions).

(b) The high density phase transition for hard spheres
and charged hard spheres in which there is adhesion between
species A and B but not between the individual A’s or the B’s
(PY/MS approximation).

1.00

0.75

0.501

0.25 v v v
0.0 0.5 1.0 1.5 20

Cst

FIG. 4. The osmotic coefficient ¢ as a function of the concentration for the
RPM and SEM (adhesive charged hard spheres in the HNC and HNC/MS
approximations. O: HNC approximation (virial equation).—:HNC/MS ap-
proximation [Eq. (1.5b)]. (See caption of Fig. 1 for details of the molecular
parameters.)
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-~

g+ -, HNC

34
g+ -, HNC/MSA
2.
14
9+ +,HNC

0

9+ +, HNC/MSA

- 3 3 3 2

FIG. 5. Distribution functions for a 2-2 model adhesive charged hard
sphere electrolyte at 2.0 molar in the HNC and HNC/MS approximations.
(See caption of Fig. 1 for details of the molecular parameters.)

{c) The effect of adhesiveness between oppositely
charged ions on the low density phase transition of the RPM
electrolyte (HNC/MS approximation).

The details of the numerical methods used to solve the
hypernetted chain (HNC) approximation for the charged
hard spheres with stickiness between oppositely charged
ions are discussed elsewhere* and are easily extended to the
present model. The parameters for the model 2-2 electrolyte
are chosen as before®*; a = 4.2 A, T =298 K, ¢, = 78.358,
and 7 = 1/£ is determined from the relation®

0.4
T=0.05
0.0467
0.3
P
EF 0.035
0.2 0.05
coexistence
PY/MSA curve
PYA .
0.1 0.04134
0.035
0.0 . .
0.0 0.1 0.2 0.3 0.4 0.5
7

FIG. 6. The phase diagram in the P /p,kT — 7 plane for adhesive hard
spheres (PY approximation) and adhesive charged hard spheres (PY/MS
approximation) where p, = 6/(ma®). The ionic parameters (e =1 esu,
a=42 A, ¢ =78.358) correspond to a reduced temperature
T* = (¢, kTa/e*) = 0.5865. The values of 7 are 0.05, 0.041 34,0.035 for the
uncharged system and 0.05, 0.0467, 0.035 for the charged system. The criti-
cal constants are in Table I.

TABLE I. Critical constants for high density phase transition 7 = 0.304.

PY* PY/MS®
7. 0.304(0.32) 0.375
T, 0.041 34(0.1185) 0.0467
P./p kT 0.329(0.32) 0.880
A 9.156(5.761) 4.537

*Hard sphere mixtures with adhesion between unlike particles A and B.
The numbers in parentheses are the critical constants and parameters for
the corresponding one component system studied by Baxter (Refs. 1 and
13).

bCharged hard spheres with adhesion between + and — ions
(T* =0.5865).
L 3
7=—"——exp| — &/kT) (3.1)
12L%w + w? I

where L = a is the distance at which oppositely charged ions
stick, w = 0.1a, and ¢, is chosen to be 6.82 kT which is the
Coulomb energy at contact in a medium of dielectric con-
stant €, = 78.358. The calculated 7 = 0.91 X 103, We con-
sider Eq. (3.1) and the model from which it is derived® as a
reasonable way to estimate the parameter 7 for a typical elec-
trolyte solution. The results are summarized in Figs. 1-5.
Figure 1 shows that there is a small but significant difference
between the association parameter A calculated according to
the HNC and HNC/MS approximations when L = a. This
is in contrast to calculations of the association parameter at
L =a/2 and a/3** when the two approximations gave es-
sentially the same values for A. The function (N ) defined
before Eq. (1.7) is also much smaller for the range of concen-
trations up to 2.0 M studied here with L = a reflecting the
smaller values of 4. In Figs. 2—4 we plot the excess thermo-
dynamic functions against the concentration and Fig. 5
shows the distribution functions for the 2.0 M electrolyte.
The HNC and HNC/MS approximations differ most at dis-
tances near contact, with g_ () negative and g _(r) too
small in the HNC/MS approximation in comparison to the
HNC approximation. The peak at r =3ain g () due to
linear trimers of alternating opposite charge is reproduced
by both approximations which are in close agreement at this
distance.

Baxter’s study of adhesive hard spheres in the PY ap-
proximation® treats adhesiveness at contact between the
spheres of a one component system. The two component A—
B system with adhesiveness only between A and B at con-
tact, which we investigate, also shows a phase transition with
a phase diagram that is shifted by the addition of charges of
opposite sign to the A’s and B’s. The critical constants ob-

TABLE II. Critical constants for the low density phase transition
17 = 0.0076.

MS(RPM) HNC/MS®
7. 0.0076 0.007 6

T* 0.078 58 0.078 66
P./p.kT 0.084 7 0.085 4

A, 0 0.02023

* Adhesive charged hard spheres (7 = 0.041 34).
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FIG. 7. The phase diagram in the 7 — 7 plane for the adhesive hard sphere
system (PY approximation) and the adhesive charged hard sphere system
(PY/MS approximation). The jonic parameters (see caption to Fig. 6) corre-
spond to a reduced temperature 7' * = 0.5865. The critical constants are in
Table I.

tained in the PY approximation (uncharged adhesive hard
spheres) and the PY/MS approximation (charged adhesive
hard spheres) for our A-B system are given in Table I togeth-
er with the critical constants for the one component adhesive
hard sphere system studied by Baxter.!® In Figs. 6 and 7 we
have the phase diagrams in the P — 7 and 7 — % planes, and
in Figs. 8 and 9 the distribution functions for these systems in
the vicinity of the critical point. The ion size (¢ = 4.2 A) and
the charge (e = 1 esu) of the adhesive charged hard sphere
system correspond to a reduced temperature T* = (¢, kTa/
e?) = 0.5865. Comparison of Figs. 8 and 9 shows that the

2.0
1.5 4
gr) 1.0
0.51
0.04134
0.0 v
0 1 2 3 4
ria

FIG. 8. Distribution functions for adhesive hard spheres (PY approxima-
tion) at a reduced density 7 = 0.304. The values of rand A (in parentheses)
are 0.05(8.861), 0.041 34(9.156), 0.035(9.385).
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2.0

1.5

g(n 1.0

0.51

0.0 v

ria

FIG. 9. Distribution functions for adhesive charged hard spheres (PY/MS
approximation) at a reduced density of 0.304. The values of rand A (in par-
entheses) are 0.05(3.687), 0.041 34(3.797), 0.035(3.882), with 7" * = 0.5865.

addition of charge produces significant changes in the pair
correlation functions of adhesive hard spheres. At this den-
sity, temperature and ionic charge the association parameter
in the PY approximation for the stickiness is positive. How-
ever, the low density phase transition of the RPM electrolyte
behaves differently when stickiness is added. The PY ap-
proximation for stickiness at this reduced temperature and
low density leads to negative values for A which are unrealis-
tic.> We therefore use the HNC/MS approximation, with an
inverse sticking coefficient 7 equal to the critical r, for the

2.5
2.01
T'=0.083
0.07866
Yo 1.51
Y HNC/MSA
alS
1.0 critical point < MSA
0.07858
0.5 coexistence
curve
0.075
0.0 , . v /
0.0 0.5 1.0 1.5 2.0 2.5
nx 10?

FIG. 10. The low density phase transition in the P/p,kT — 3 plane for the
RPM electrolyte before (MSA) and after (HNC/MS) introducing adhesive-
ness (r = 0.041 34) between oppositely charged ions where g, = 6/ma’.
The values of T* are 0.083, 0.078 58, 0.075 for the RPM (MSA) and 0.083,
0.078 66, 0.075 for the adhesive charged hard sphere system.
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FIG. 11. The ion distribution functions for the adhesive charged hard
sphere system depicted in Fig. 10 at a reduced density of % = mpa®/
6 = 0.0076. The values of T* and A (in parentheses) are 0.083 (0.315),
0.078 66 (0.0202), 0.075 (0.0133) with 7 = 0.0413.

high density phase transition, to ensure that the sticking co-
efficient £ introduced is nearly the same. The association
parameters A which are also functions of the density and the
ion interactions turn out to be quite small in comparison to
what is found near the high density phase transition. The
phase diagrams are shown in Fig. 10 and the critical con-
stants given in Table II. In Figs. 11 and 12 we have the distri-
bution functions before and after adding the adhesiveness to
the RPM electrolyte. It is apparent that the phase diagrams
and correlation functions near the two phase region are bare-
ly altered by the addition of the prescribed adhesiveness. The
absence of peaks corresponding to significant amounts of

51
T"=0.083

9N 44

_1ﬁ

0.083

2 3 4

rfa

o
-

FIG. 12. The ion distribution functions for the charged hard sphere system
(RPM) at a reduced density 7 = 0.0076. The values of T* are 0.083, 0.0786,
0.075and A = 0.

5.0

g
4.0] .

0.0786

3.0 0.083 0.075
a(n

2.0
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0.0 v —
0 1 2 3 4
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FIG. 13. The ion distribution functions for the adhesive charged hard
sphere system depicted in Fig. 12 except that 4 =1/7=131.6, ie.,
(N)y=1

trimers, tetramers, etc. and the smooth and featureless cor-
relation functions for r>a + in the vicinity of the critical
point suggest a distribution of dimers and clusters of varying
sizes near this low density phase transition. In the limit
A = 1/7 the distribution functions at the critical density
shown in Fig. 13 are quite different reinforcing our views
about the low density phase transition. The HNC/MS equa-
tion cannot be used to check the high density phase transi-
tion observed in the PY/MS approximation since the re-
placement of the PY approximation for adhesion by the
HNC approximation does not lead to a well defined critical
point at realistic fluid densities and reasonable values of the
sticking coefficient.
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