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The polarization density profiles Pz, E) for dipoles in the vicinity of a wall, from which an electric field
emerges, have been calculated using the mean spherical (MS) and renormalized linearized hypernetted chain
(RLHNC) approximations. The profiles for the two approximations are significantly different. The presence
of a component of the polarization density that is perpendicular to the field E, when the field is neither
perpendicular nor parallel to the wall, is noted. The anisotropic response of the fluid to the electric field in the
vicinity of the wall is discussed in terms of a local dielectric tensor when the relationship between the

polarization density and the electric field is linear.

{. INTRODUCTION

The polarization density P or dipole moment per unit
volume is a fundamental property which enters into near-
ly every discussion of the dielectric properties of a
fluid.? The well-known linear constitutive relation

P=[(c-1)/47]E, (1.1

which links P with the Maxwell field E, defines a field
independent dielectric constant € in the limit of zero
field. Recent studies of the density profiles of dipoles
adsorbed at a wall®® enable Eq. (1.1) to be extended in
two ways. Firstly, it has been possible to discuss
nonlinear contributions of 0(£%) to P by employing the
quadratic hypernetted chain (QHNC) approximation* for
the wall particle correlation function, and secondly, we
can, as we are about to show, obtain the polarization
density profiles in much the same way that the density
profiles for dipoles have already been determined in the
mean spherical (MS) and renormalized linearized hy-
pernetted chain (RLHNC) approximations,

In what follows we consider the polarization density of
an open system bounded on one side by a flat wall from
which an electric field emerges at an inclination o to
the unit normal 7. The local polarization density is
P(z, E,), where z is the distance from the wall and E,
is the external electric field. In our study, this field
is created by a dipole embedded in a nonconducting hard
sphere of infinite size thereby mimicking a flat hard wall
from which an electric field emanates (see Fig. 1). The
external field E; is related to the inclination of the wall
dipole by

E; = Ep(3 cos®6, +1)1/2 3, | (1.2)

where E, is a constant, 6, is the angle between a unit
vector §, in the direction of the wall dipole and the unit
normal #, and

¥ present address: School of Chemical Engineering, Olin Hall,
Cornell University, Ithaca, N,Y. 14853,

J. Chem, Phys. 75(11), 1 Dec. 1981

0021-9606/81/235497-06$01.00

3 cos 6,7 -
8= ‘—sl_z‘_%ﬂ
2=@coFo, 1 )17 7 1.3)
where &, is a unit normal in the direction of E,. The

field E; is independent of z and the relationship between
a and 6, is given by

S 2¢0s6,
@~ (3 cos 9, +1)

As discussed elsewhere, * the Maxwell field E and the
external field E; are related by

(1.4)

E E; +nonlinear terms , (1.5)

-3
T (2¢ +1)
where the coefficients beyond the linear term in Eq.
(1.5) are one source of nonlinear effects in the polariza-
tion density P(~, E,) in an open system; the other is
electrostriction.
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FIG. 1. The coordinate system used to describe the wall-di-

pole interactions, the electric field vector E;, and the wall di-
pole m, §,.
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The symmetry of the system allows P(z, E;) to be de-
composed into two components, which we take to be
parallel and perpendicular to the electric field E, with
unit vectors 52 and &, along these directions so that 53
and ég are a right-handed pair of coordinate axes in the
plane defined by E, and #. We can, therefore, write

P(z, E,) = |P(w, E;)| [Pz, a)8y+ Pi(z, a)g),  (1.6)
with
lim Py(2, a)=1, z-=w, (1.7
lim Py(z, a)=0, 2z-o, (1.8)

which follows from the fact that P(~, E,), the polariza-
tion density infinitely far from the wall, is parallel to
the electric field, when they are linearly related to
each other. It has been shown elsewhere that P(«, E,)
obeys the linear constitutive relation when the MS and
LHNC approximation are used for the wall—particle
correlation functions and when the nonlinear terms in
Eq. (1.5) are neglected, *

This paper deals with the determination of the po-
larization density profiles P(z, E,) for the MS and
RLHNC approximations through the calculation of P(z,
a) and Ps(z, a) for 0< o <7/2. For these approxima-
tions P,(2, «) and P;(2, «) are independent of the elec-
tric field, and merely serve to scale the field dependent
P(o, E;) of Eq. (1.6) in determining the polarization
density profiles. This is not the case with the QHNC ap-
proximation. Carnie and Chan® have also discussed
polarization density profiles away from a flat charged
wall but for ion—-dipole mixtures (of low electrolyte con-
centration) using the MS approximation. The electric field
that is employed is always perpendicular tothe surface and
is a function of the electrolyte concentration and the dis-
tance from the wall, The same system has also been
studied by Blum and Henderson.® Our discussion, al-
though limited to dipoles, includes a comparative study
of the RLHNC and MS approximations, Although both
these are linear approximations, the density and po-
larization density profiles that they predict are sig-
nificantly different. We have also studied changes in
these profiles brought about by altering the electric
field angle, and find effects which have not to our knowl-
edge, been explicitly calculated before. These special
effects arise from the presence of a component of the
polarization density that is perpendicular to the elec-
tric field and is related to P,(z, «) in Eq. (1.6). This
component vanishes at an infinite distance from the flat
surface where the component in the direction of the field
assumes the bulk value, When the field is parallel or
perpendicular to the wall however, P;(2, «) vanishes,
and there is only a single component to the polarization
density which is always parallel to the field. In the
MS and LHNC (or RLHNC) approximations, the two pro-
files for fields parallel and perpendicular to the inter~
face completely determine the components of the polari-
zation density at any other field angle. The wall there-
fore introduces an anisotropic response to an external
electric field, which may be discussed in terms of a
local dielectric tensor when this response is linear. We
conclude this section by recalling a few formulas, in the
notation of Ref. 3, that are essential to our discussion.
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The wall—particle correlation function A (2, E,, £;)
has the invariant expansion

}121(‘39 an 01)=h§1(z)+h§1(z)D(2, 1)
+hiy(2) A2, D+---

(1.9)

with an analogous expansion for the direct correlation
function ¢, (2, E;, £;). In Eq. (1.9), the basis functions
D(2, 1) and A(2, 1) have the usual definitions:

D2, 1)=8,-(3nn-U)-§, ,
A(29 1):§2‘§1 ’

(1.10)
(1.11)

where §, and §, are unit vectors in the direction of the
wall-dipole and fluid-dipole, respectively, and U is
the unit tensor. The coefficient 45 (2) in Eq. (1.9) is
short-ranged, while k2;(2) is long-ranged and can be
written as the sum of two terms

Wy (2) =18\ (2) + 3K, ,

in which /;(2) is a short-ranged function and Ky, is a
constant related to the electric field. The density pro-
file py(2, E;, &) of fluid dipoles against the wall is
obtained from

py(2, By ) =pi[14hy(2, E; Q)] , (1.13)

where p? is the density of the bulk fluid in the absence
of the electric field.*

(1.12)

1. THE POLARIZATlON DENSITY PROFILE

From the definition of the polarization density in the
grand canonical ensemble we have!
1
P(z, Ez) = 5 fdﬂl pl(z, Ez, 01) ml(ﬂl) y (2. 1)

where m,(£,) =m,5,(&,) and € is a normalization constant
equal to 47 for dipolar hard spheres. Usingthe invariant
expansion (1.9), Eq. (1.13) and the result

f h34(2) §1(“1) ag, =0

we obtain

P(z, Eg:%ﬂi f Ay {3k, + 2,(2)] D2, 1)

+h3(2) A2, 1)+ }5(8) . (2.2)
Since
1 - “
5 [ &@s@ane-tvu, 2.3)
we have from Eqs. (1.10) and (2. 3),
éfp(z, 1) 5,(R,)dQ, =3(3cos?0, +1)128, .  (2.4)

Also from Eqs. (1.11) and (2.3)

1 “ -
5 [ ae, D@0, =1 5@
=~1(3cos?0, +1)1/2 8, + cos 6,71 .
(2.5)
Using Eqs. (2.4) and (2.5) in Eq. (2.2), eliminating

2,(2) and h$(2) in favor of the 73;(z) functions defined
through®
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RSy (2) =[72,(2) +3 HA(2)) /3K, (2.6)
k5 (2) =[ BBy (2) - W (2)] /3Ky, 2.1)

and making use of the relation (1. 4) between o and 6,
we find

P(z, Ep)=my p) Ky (3 cos?0, + 11 2{[14+ 75 (2)+--- e,
+[By(2) - 15y(2) + - - - 1 cos an} . (2.8)

Since

(2.9)

where (&;, &,) form an orthogonal pair of unit vectors,

P(z, E,)=mp} Ky,(3 cos?O, + 1)!/2

x{[1+#,(2) cos?a +h5,(2) sin®a +- - - | &,

f=cos a; +sin ady ,

+[M3y(2) = h3(2) ++ ] cosasinas}. (2.10)

The h;,(2) functions are linear combinations of the short-
ranged functions /2,(2) and %§i(2) and vanish when z—,

Hence,

P(e, E,)=mpd Ky(3cos?0,+1)1/26, (2.11)

which is a relation derived earlier by Rasaiah, Isbister,
and Stell.* The relationship between K,, and E, leads, '
through Eq. (2.11), to the external field dependence

of the polarization density at an infinite distance away
from the wall.** Comparing Eqs. (2.10) and (1.6)

and taking note of Eq. (2.11), we find that

(2.12)
(2.13)

Py(2, a)=1+k3(2)costa +h5(2)sinfo +- .- ,
Py(z, o)=[#,(2) =R (2)] (sin 2a)/2+ -+ .

In the MS and LHNC approximations the invariant expan-
sion (1. 9) terminates after the first three terms so that
Eqgs. (2.12) and (2. 13) are exact within these approxima-

tions, Hence,
_Ms N
Py(z, a)iiﬁié 1+h3(2) cos’a + I3y (2) sina, (2.14)
MS .
Pz, @) 222 Do) - @) B L @)

Note that when a =0, =, + /2, the component P;(z, a)
which is perpendicular to the field vanishes.

{ti. RESULTS AND DISCUSSION

The formulation of an integral equation for the function
15,(2) and #3,(2) under the MS and RLHNC approxima-
tions has been presented in an earlier paper.® There
the following equation for /,;(2) was derived:

ha*l(z) =[ ggl(z) - 1] +gg1(z) Z"Ku P:
x{2[B*) - B*(2)] +[ D*() - D*(2)]

+fo B (DB o) - B 2=y ay}, (3.1)

where K;, is related to the dipole moment of the fluid
molecules® and B*(z) and D*(z) are integrals over the

direct correlation functions cfl(r) of fictitous fluids at
densities p} =2p} and pj = - p};
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FIG. 2. The component Py{z,0) of the polarization density,

as a function of distance z from the wall, for models A and B,
when @ =0, The contact value of P,(z,0) in the RLHNC approxi-
mation for model B, which has been omitted, is 10, 2,

BY2)- fo ch(s)sds 3.2)

Z
p*a)= [ chy(s)ds. (3.3)
0
When g5,{2) is set equal to 1 in Eq. (3.1) the formal
equation for /3,(2) in the MS approximation is re-
covered; otherwise Eq. (3.1) is the appropriate equa-
tion to use in the RLHNC approximation,

Solutions of Eq. (3.1) may be applied to the determina-
tion of the polarization density profile through Egs.
(2.14) and (2. 15), As discussed in Sec. I, the com-
ponents of P(z, E;), P,(2, @), and Ps(z, a) are ex-
plicitly independent of the electric field and act only to
scale the profile about its asymptotic value P(», E;)
in the vicinity of the solid-liquid interface. This may
be seen in Eq. (3.1) which does not contain any terms
which depend explicitly upon the electric field.

The components of the polarization density profile
obtained from Eqs. (2.14) and (2. 15) are shown in
Figs. 2 through 4, Each figure corresponds to a dif-
ferent inclination ¢ of the electric field (see Fig. 1).
These calculations are dependent upon two reduced pa-
rameters; (1) the reduced density pf =plR},, where
Ry, is the diameter of bulk hard spheres, and (2) the
reduced dipole moment squared »#® =n# /RTRS,, where
m, is the dipole moment, % is Boltzmann’s constant, and
T is the absolute temperature. Two sets of reduced
parameters, displayed in Table I, are used in the cal-
culation presented here. For brevity, we shall refer
to these sets as model A and model B. Model B employs
nearly the same dipole moment and density as liquid
water (m, =1, 85D) at 295 °K, assuming an effective hard
sphere diameter of 2.76 A. The bulk dielectric con-
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TABLE 1. Parameters for the model dipolar fluid considered.
Model ot m¥: €(MSA) €(RLHNC)
A 0.573 0.500 2.67 2.70

B 0.700 4,00 45.8 221

stants, in the limit of zero field, of the two model sys-
tems calculated numerically according to the relation®’

€ = Q.(2Ky, o} R};)/ Q- Ky P RYy) 3.4)

where
Qu(p%)=1-p* f cu(r)dr

are also given in Table I. Our results for the MS ap-
proximation are in nearly exact agreement with
Wertheim’s analytic theory,” thus providing a useful
confirmation of our numerical work for the bulk fluid.

In Fig. 2 the electric field is positioned normal to
the surface and the component of the polarization den-
sity parallel to the electric field is shown as a function
of distance from the wall, in units of the hard sphere
radius R;. As may be seen from Eq. (2.15), the com-
ponent of the polarization density perpendicular to the
field makes no contribution when the electric field is
normal to the wall ¢ =0 and P;(z, 0) is determined by

13y (2):
Pz, 0)=1+K5(2) . (3.5)

The upper pair of curves correspond to MS and RLHNC
approximations for model A and the lower curves cor-
respond to the higher reduced density and reduced di-
pole moment of model B.

Several features of P,(2, 0) are immediately apparent,
The nonuniformity of the polarization density for a
dense, highly polar fluid is extended further into the bulk
phase in the RLHNC approximation, Oscillations in
P;(z, 0), with an amplitude which deviates from its
asymptotic value by 5%, are evident beyond even 7 hard
sphere diameters from the solid surface for model B.
For the same parameters, the MS predicts the bulk po-

3 ] a’=2-573
0.
, | RLHNC =05
§ !
2, Ms
» A=70
ot 2 A 2
RLHNC =40
M 1
(0] T T =T T L2
R 5R 9R 3R

FIG. 3. The component P,(z, 7/2) of the polarization density,
as a function of distance z from the wall in units of the hard
sphere radius, for models A and B when o =7/2,
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FIG. 4. The components P,(z,7/4) and P4(z,7/4) of the polari-
zation density, as a function of distance z from the wall in

units of the hard sphere radius, for models A and B when «
=r/4. The contact value of Py(z, 7/4) in the RLHNC approxima-
tion, which has been omitted, is 6.1,

larization density to within 0, 001% at roughly 3.5 hard
sphere diameters. The upper portion of Fig. 2, B(z,
0) for model A, displays the effect of the diminished
density and dipole moment which results in a uniform
polarization in both theories at around 3. 5 hard sphere
diameters, with oscillations appearing in the RLHNC
approximation which are not present for the MSA. The
oscillations in P,(z, 0) are similar, in some respects,
to the polarization density profiles around a single ion
in a dipolar solvent.®

When the electric field is parallel to the flat wall, the
results of Fig. 3 are obtained, Again P,(z, 7/2) makes
no contribution to the polarization density. However,
for this field orientation the profile is determined by

Fz1(2)
Py(z, 1/2)=1+h5(2) . (3.6)

We find again that for model A the asymptotic value of
P(z, E,) is attained in 3. 5 hard sphere diameters to
within 0.001% and that oscillations are extended for
model B further into the bulk phase. The effect of lower
density and smaller dipole moment are again apparent
in the two sets of curves depicted in Fig. 3,

The dependence of Py(z, 7/2) on hy(2) produces two
interesting contrasts. First, the MS approximation pro-
duces profiles, similar to bulk Ay, (7) values in this ap-
proximation, which rigse monotonically to the asymptotic
value, unlike profiles in the a =0 case, Second, a field
oriented parallel to the wall results in higher polariza-
tion densities near contact for model A than for model
B, in opposition to the results of Fig. 2, where the field
is oriented perpendicular to the wall.

In Fig. 4. we present both components of the polariza-
tion density profile produced by a field oriented at 45°
from the normal to the wall for parameters which cor-
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respond to model B. Both the MS and RLHNC approxi-
mations are shown. From Eqgs. (2.14) and (2. 15) we
see that

Py(z, 1/8)=1+[13y(2)+ k5 (2)]/2, 3.7
Py(z, “/4)=[h§1(z)—hz-1(z)] /2. (3.8)

Since the 43,(2) functions are independent of the magni-
tude and inclination of the electric field in the MS and

RLHNC approximations, P,(z, 7/4) and P;(z, m/4) are
linear combinations of P,(z, 0) and P,(2, 7/2), with

Py(z, 1/4)=[ By(z, 0)+ By(2, 1/2)]/2, (3.9)

Py(z, 1/4)=[By(z, 0)-Py(z, 1/2)]/2 . (3.10)

Sustained oscillations are present in both components
under the RLHNC approximation, whereas the MS closure
predicts homogeneity to within 0.001% beyond 3. 5 hard
sphere diameters. The component P,(z, 7/4) that lies
perpendicular to the electric field vanishes at an infinite
distance away from the wall, while P,(z, 7/4), which
lies parallel to the field, has an asymptotic value of
unity, It is clear that for any other field angle o that
is neither 0 nor 7/2, the components P,(2z, «) and Ps(z,
o) are completely determined, in the LHNC and MS
approximations by P,(z, 0), P,(2, 7/2), and «, all of
which are independent of the magnitude of the electric
field.

The phase differences between the oscillations of the
polarization density profiles predicted by the RLHNC and
MS approximations are related to the absence of any
contributions to these profiles from the spherically
symmetric component of the invariant expansion (1. 9) for
hyi(z, E,, §), when the MS approximation is employed.
In this approximation, g5,(z) is set equal to unity in the
integral equations [Eq. (3.1)] for the 4;,(z) functions,
and the oscillations in g3, (2) near the wall at high densi-
ties fail to materialize, with their characteristic phases,
in the polarization density profiles even though they are
present in the corresponding density profiles. In the
RLHNC approximation however, the spherically sym-
metric component g, (2) is reflected in the structure of
both the density and polarization density profiles.

In their discussion of ion—dipole mixtures using linear
response theory, Chan, Mitchell, and Ninham® have dis-
cussed the separation of the polarization density in Four-
ier space into components perpendicular and parallel to
the k direction of the electric field. These components
are coupled to the bulk 7%,(¥) and %, (k) functions, re-
spectively., Since the Coulomb potential produced by an
ion is a longitudinal field, their calculations in the MS
approximations deal only with the longitudinal component
of the polarization density. Although the electric field
created by an ion falls off with distance, a comparison
of their work with ours is of interest. When the dielec-
tric constant in the MS approximation is 48, and in the
limit of point ions, they obtain negative values of the
polarization density near the first two minima. Our
calculations, with a =0, would correspond to the op-
posite limit of a macro-ion producing a constant electric
field and do not, for the models and approximations
considered here, yield negative values for P,(z, 0).

The circumstances under which the linear constitu-
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tive relation is obeyed have already been mentioned in
Sec. I and discussed in detail in Ref. 4. Within this
linear regime, the polarization density profiles may al-
so be discussed in terms of a local dielectric tensor®
through an appropriate generalization of the constitutive
relation

P(z, E)= (S(f—)i) ‘E, (3.11)

47
where €(2) is the dielectric tensor and the field E is
constant, Taking the z axis along the normal # and the
wall as the xy plane, the off-diagonal elements of the
dielectric tensor are zero, with

€:m(z) =€yy(2)¢ €zz(z) s (3- 12)
except that
lim €, (2) =lim €,,(2)=¢€ , (3.13)
2= Z=0
where € is the bulk dielectric constant. The two in-

dependent components may be characterized as the
perpendicular and parallel components ¢,(2z) and €,(z2),
with reference to the flat wall:

(3.14)
(3.15)

€(2) =€5:(2) = €,(2) ,

€(2) =€ (2) .
Orienting the axes so that the field lies in the xz plane,
and writing Eq. (3.11) out in detail

P(z, E)=(€—(zl:—1> Ex+<5iz)—‘—1> E.n,  (3.16)

47 4n
where % and 7 are unit vectors along the x and z axes,
respectively. Comparison with Eq. (1.6) yields, after
some algebra (see Fig. 1)

Py(z, a)=1+<51'€(—z_);—1 —1) sin®a
+(—€-"izz_zl —1) cos’a , (3.17)
Pz, a)=<€*(zl'_€1"(z))smzza (3.18)

It follows from Eqs. (2.14) and (2. 15) that in the MS
and LHNC (or RLHNC) approximations

e (z)=e+(e-1)15(2), (3.19)
e(2)=€+ (€ = 1)5(2) . (3.20)

These provide simple relationships between the com-
ponents of €(z), the bulk dielectric constant ¢ deter-
mined for infinitesimal fields by the particle—particle
correlation through Eq. (3.4),! and the wall-particle
correlations k3 (2). It follows from Fig. 2 that near
the wall €,(2) is larger than the bulk value. Figure 3,
however, implies that ¢,(2) behaves quite differently in
the vicinity of the wall, in the RLHNC and MS approxi-
mations. The local dielectric tensor introduced in our
study thus provides a convenient interpretation of the
components of the polarization density.
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