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Earlier work in simple polar fluids is extended to higher multipolar terms. Some general properties
of multipolar expansions and of the three-body terms that appear in them are considered. Illustrative
application is made to a system of quadrupolar spheres. A method of incorporating the effects of
nonspherical molecular cores into our formalism is outlined, and some preliminary estimates are given
for the relative size of such effects compared to that of the quadrupolar terms.

I. INTRODUCTION

This paper represents a continuation of earlier work!:2
on simple polar fluids. In that work we developed a
Padé technique to extrapolate our results beyond second
order in the dipole moment; we also showed! that similar
models with higher multipolar forces of appreciable
strength would also have to be treated by such extrapola-
tion techniques to obtain accurate results. Here we dis-
cuss certain general aspects of the multipolar expansion
and the treatment of the three-body terms that appear in
it. We go on to use these results in a Padé treatment of
quadrupolar spheres as an illustrative example.

All of the above work is done in the context of refer-
ence-system distribution functions that are assumed to’
be functions of position but not orientation of the refer-
ence-system particles (where by reference system we
mean the system in which the multipolar strength param-
eters are all set equal to zero). This assumption is
strictly correct only for reference systems in which the
interparticle potentials are orientation independent, but
real molecules that interact anisotropically enough at
large distances to have appreciable polar moments al-
most inevitably come with repulsive cores that also devi-
ate appreciably from spherical symmetry. As a result,
our work has so far been of limited direct applicability
to real systems.

In the latter part of this paper we begin a study of the
use of our results in treating models with nonspherical
cores, and we continue the study in a companion paper.
But here it is perhaps worthwhile to elaborate on what
we hope to accomplish—and believe we have accom-~
plished—by studying the properties of the somewhat
more restricted class of models with symmetric cores
that we have been investigating in such detail.

3

Our prime motivation is a canonical one of the theo-
retician—to deal with the simplest possible models that
will capture certain essential new features of the sys-
tems under study. For us the systems are polar fluids
as well as several closely related systems to which we
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shall return later in this introduction, and the behavior
we wish to understand is their thermodynamic behavior.
We have begun with models designed to isolate the ther-
modynamic effects of the ideal polar terms with fixed
polar moments so that we can clearly discern the new
features that already arise from the presence of these
terms before we attempt to further embellish our Ham-
iltonians with the complexity that characterizes real
polar molecules and that will surely be necessary to
bring our model computations into quantitative agree-
ment with experimental results. Some key features of
polar interactions that our work has either revealed or
illuminated are the following.

(i) A characteristic “saturation” occurs in polar sys-
tems (including monopolar, i.e., charged systems) as
the polar interaction strength X increases, causing the
free energy per particle to behave more and more lin-
early in A as X increases. The appropriate nondimen-
sional A for charges is ﬁez/R, where 8=1/kT, e is
charge, and R is particle diameter, while for dipoles it
is BuZ/R? with u the strength of the dipole moment, for
quadrupoles it is B6%/R®, where @ is the quadrupole mo-
ment, etc. This saturation effect as a rigorous asymp-
totic result for »~ = was recognized by Onsager* long
ago, but we find that it already makes itself felt in an
important way in simple models as soon as X is on the
order of unity. !+%+5¢

(ii) The saturation effect for charges® and dipoles!’2
can be captured with remarkable accuracy for all A of
interest by means of a simple Padé extrapolation tech-
nique.

{(iii) The ideal dipole term is enough to induce a nor-
mal liquid-gas critical point in a dipolar model even
without the further addition of any attractive dispersion
forces.?

(iv) The critical behavior in the neighborhood of the
liquid—-gas critical point of polar liquids is unlikely to
be qualitatively different from that of nonpolar liquids
despite the great difference in the asymptotic symmetry
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of the pair potential; in particular we find’ that the ther-
modynamic critical exponents are unlikely to differ from
those of nonpolar fluids any more markedly than the ex-
ponents will differ from nonpolar fluid to fluid. Thus
they may not differ at all. On the other hand certain key
critical constants will be affected by the presence of
permanent polar moments. The eritical ratic (8p/ p)c,
with p pressure and p number density, is one such con-
stant that will depend on the relative strength of terms of
order ", n>2, in a dipolar fluid.® Similarly, partly be-
cause of the enhanced magnitude of the term in excess of
the hard-core contribution to the free energy and partly
because of the striking difference in temperature depen-
dence of the polar contributions to this perturbing term
compared to the dispersion contributions, one can an-
ticipate characteristic global differences in the shape of
the p-p-B surface—for example in the slope and relative
linearity of the diameter of the coexistence curve!*’—be-
tween polar and nonpolar fluids. °

We return now to those systems other than polar fluids
to which our work is relevant. First, it has an obvious
application to polar solids, which has already begun to
be explored.® Second, the simple dipolar models we
have studied prove to be useful models of ferroelectric
colloids'! and of rotons.!? Finally, we note that there is
an immediate application of our techniques and results to
the evaluation of the n-body contributions arising from
induced forces of various sorts rather than from the
presence of permanent multipolar moments. In particu-
lar our results carry over immediately into the assess-
ment of 3-body dispersion forces'® as well as to 3-body
effects induced in mixtures.'* We defer such application
of our techniques and results to a future publication ex-
cept to note that the techniques of the Appendix can be
readily used to obtain the linear contributions to the non-
additive multipole—multipole—-multipole contributions to
virial coefficients. The results of Sec. IIl, for example,
already include the quadrupole—quadrupole—quadrupole
term for hard spheres.

We proceed next to a technical summary of our treat-
ment, which explicitly includes contributions to the
Helmholtz free energy f from the two-body interactions
of O(®), where A®=2,\,),, with ), the strength param-
eter related to the electric moments of the molecules.
For instance, A o W%, a,x 6%, xgx &% where i, 6, and
& are the dipole-moment, quadrupole-moment, and
octupole-moment, respectively, of the molecules.

It is well known that the dipole and multipole contribu-
tions of O(A) to the free energy f are identically zero if
the potential consists of a spherically symmetric refer-
ence term plus multipole terms, with no monopoles
(i.e., charges) present. (We shall restrict our attention
in Secs. I, II, and III to such potentials; in Sec. IV we
take up briefly the important question of treating mole-
cules with cores that are not spherically symmetric. )
For uncharged particles with a pair potential that can be
represented as a spherically symmetric term plus ideal
multipole terms, the absence of the O(\) term comes
about from the angular averaging of the various dipole
and multipole terms to O(\) in f, so that the lowest or-
der two-body term which survives is of 0(x%), where A%

=\, In considering the higher-order terms we shall
prove a general theorem showing that any two-body term
of 0(A¥1) in the free energy is zero if the interaction in-
volves at least one dipole or an odd multipole (e.g., an
octupole).!® This result could also be seen from symme-
try arguments. If we, for example, limit ourselves to
electric moments no higher than the octupole moments,
the only two-body term in the free energy to O(x%) which
does not vanish is the quadrupole-quadrupole interaction
of 0(6%). We have evaluated this here and find that like
the three-body contribution of 0(6®) it is opposite in sign
to the term of 0(8*), so that the partial cancellation of
terms in the free energy expansion, which has been dis-
cussed earlier, ' is enhanced for molecules with quadru-
poles. The term of O(6®) must hence be included in any
generalization of the Padé approximant for the free en-
ergy of polar fluids, which has been shown to be accu-
rate for molecules with point dipoles. >*® In particular,
for quadrupole particles, the free energy expansion {ig-
noring polarizability and assuming spherical symmetry
of the particle cores) is

F=foe b+ (4 F+eo (1.1)

where f° is the free energy of the reference system and
f3, f%,2, and f§, for which detailed expressions are
given below, are such that f3<0 while f% , and f§ are
each > 0. By analogy with the simple Padé approximant
for dipoles, we may approximate the free energy of such
guadrupole molecules by

F=r0+atral1 - 68(r o+ £/ 64 FOI . 1.2)

Section II contains the proof of the simple and almost
transparent theorem concerning molecules with odd
multiple moments. We then go on to derive, in the same
section, the quadrupole—quadrupole term of O(6%) by a
method that is readily extended to higher multipoles.
(The next multipole of importance to the same order in
A at the level of two-body interactions is the hexadeca-
pole moment.) In Sec. IIl numerical results are pre-
sented for quadrupole molecules with spherical cores
and in Sec. IV we present a brief discussion of non-
spherical quadrupolar molecules.

Il. A THEOREM FOR MOLECULES WITH ODD
ELECTRIC MOMENTS, AND THE EVALUATION OF
THE QUADRUPOLE-QUADRUPOLE TERM OF 0(6%)

In the perturbation theory of polar fluids the pair po-
tential v(x,, X,) is written as
v(Xs, X,) =vo(r) + ) Naw(xy,X,), A, >0 @.1)
L]
where vg(r) is potential energy of the reference system

and 3w(X,, X,) is one of the perturbing potentials, which
for molecules with axial symmetry is given by

; ka(xf ’ xl)

=4m D0 30 30 X Mm)S, 1 (6F, 21)S, (6, 9]1) .
il (2.2)
In (2.2) X*4™ is determined by the integers (1, 1;) which
characterize the electric moments at the molecular cen-
ters at ¢ and j and the integer m in the summation ranges
over the values ~min({}; Z,) to +min(l,, ,). I I,=1 we
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have a dipole at {; I, =2 denotes the presence of a quad-
rupole at 5. An odd electric moment at the molecular
center { corresponds to an odd value for the integer I,.
The orientations of the molecular axes at £ and j are de-
termined by the pairs of angles (6%, ®{’) and (6J!, &)
defined with respect to the polar axis at { directed to-
wards j and the polar axis at j directed towards . The
angular functions S,,,, (6}, #}/) are the surface harmonics
defined below in (2.9), and the interaction coefficients
X*'HUm(y), which are determined by the electric moments
at £ and §, obey the symmetry relations

XHym(y) =X ul™(y) (2.3)
Now if we let
Akwl;llz(xly xz)
(2.4)

= 4#2 Xulzm(r)sum(eiz, ‘I’iz)szgm(egly le) s
m

then A,w,l,z(xl, X,) represents the perturbation due to a
given pair of electric moments centered at 1 and 2 which
are defined by the integers I, and I,. The angularly
averaged two-body potential which contributes to the
free energy is

Elllz == (1/3)1n<exp[_ ﬁlkwlllz(xly xz)]>w ’ (2 5)
where {( )}, denotes [1/(47)?]f( )dwidw;. On expanding
the exponential in (2. 5) and interchanging the order of
summation and integration we have
{exp|[- B)\nwzlxz (xy, xz)]>w = Z <[7\nw1112(x1; x)" )

n=0 (2 6)

Substituting (2. 6) in (2. 5) and expanding the result in a
(n)

power series in 3, we get the coefficients u;];, of A3 in
the series expansion
=
g = 2, M @.7)
e

which gives us the general two-body term of O(\]) in the
free energy. We observe that if, for a given (2, 1,),
every term of O(\2™!) in (2. 6) is zero, then every term
of O(%™!) in (2.7) is also zero. The question arises for
what choice of (I,, I,) is this true, and the answer which
is shown below is that it is so if either I, or I, is odd.

The general term of O(\Z™!) in (2. 6) reads

<[>‘kw!1 12(x1 ’ xz)]z""‘1 >w

2 n+l

g UML) C RS

2n+l
a3 [ X
m) mg

mopsy p=1

(2.8)

xCcH cle (2.9)

MIMoeeatMopy] ~ MIM2eoeMpsel *

where

21
3
lema..-mg,,u J :!-1 S,m(eiz, ‘ﬂz)dwl

in which duw, = sin6}?d6i2d®}® and a similar expression

holds for Cp2 ... .mopes >

2.10)

2n+l

i
szlmz...mznﬂ j g Slzm?(ggly ¢§1)da’2 . (2- 11)

By using the definition of the spherical harmonics

12 21+1 (Z_—Lnl_)!_] i im0
(9 ) [411 (l+|m|)l P (COS@)e , (212)

integration over the angle <I>{2 can be done independently
of 8i2. Then since

2y 2n+l 2n+1
J exp{i > m,d} }dd)lz 2175(2 ,,> (2.13)
0 p=l
we have, after making the substitution x = cosG}z,
; 2n+l +1 2n*l
lelmz...mzml 2"5<Z > . H le’l (x)dx, (2.14)

where K is a normalization constant and §(@m,) the delta

function. This means that C,,,ll,,,z.",,,zm1 is zero unless
2+l
my=0 . (2.15)
=1

The parity of the associated Legendre functions
""P' (x) is expressed by

'""" (= %) =(~ 1)'1""""P'""‘ (%), (2.15)
from which it follows that
1 2n+l
Crlnllmzn-mznﬂ = const[1 + (= 1)@ DITIml | Jo g le,I (),
which is zero if .17
2n+l
(2.18)

@u+ly+ 2 |m,]
=1

is odd. But the restriction (2. 15) implies that
2nel

Z lm,,!

is even, and hence lelmz."mz is zero if [, is odd. Sim-
ilarly, C,,.l,,.z.,,,nz,”1 is zero 11”12 is odd. This proves our
theorem that #{25’ is zero if Iy or L, is odd. Applying

this result to two-body dipole (D), quadrupole (Q), octu-
pole (O), and hexadecapole (H) interactions, we see that

to O(\Y),

'dgs) ug)& _( —(3) - ;;(Qs& — -u-(QS})I "‘(3) 0 (2 . 19)
while
aR+0, wHh+#0, uh#o0. (2.20)

We can now obtain an expression for u(Qsé which in the no-

tation introduced earlier is also %$y since I, =1,=2
Then from (2.7) and (2. 5) we have

3132_( = 318%u53 -M—)EJ’sz(Xl: x;)dwydw, (2.21)
+2 +2 +2
=4re® Y. Y D XFmy)
mye~2 mz—z mg==2
XX Bm2(y)X 2mY () Ch moms]” > (2.22)

where we have used (2. 4) and A, =6 in going from (2.21)
to (2.22). In (2.22)
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TABLE I. Values of my, my, mg, and Cinymymg for quadrupoles.

my my my Permutations Conymyms/2m

0 0 0 1 6/4m3/4)

1 -1 0 6 (6/4m3 %)

2 -1 -1 3 &yt/2s /amd g,
-2 1 1 3 G112 6/4m3 2 d)

2 -2 0 6 - (5/4m%/2d)

"
i momg = 26 (my + mp + me)K L Pyt (x)Pime! (x) P (x)dx
(2.23)

in which the constant K is expressed by

( 3/2[(2—|mll)1(2 lmzl)!(z—lm,l)x]llz
4y 2+1m D2 +Ima )1 (2 +1ma D1 ’

(2.24)
The sets of integers which satisfy the requirement [see
(2.23)]

m1+mz+m3=0 (2.25)

and the condition that 1m,l< min(l,, ;) =2 are given in
Table I. For these sets the direct evaluation of Cﬁ,lmam
is easy once the associated Legendre functions Plm1¥x),
etc., are expressed explicitly as functions of x. Alter-
natively the integral of the product of three associated
Legendre functions may also be expressed in terms of
the Clebsch—Gordan coefficients or the Slater coeffi-
cients which are tabulated in Pauling and Wilson.!® We
have evaluated these integrals directly and checked them
against Pauling and Wilson’s tables. They are given in

Table I. From these results and the appropriate inter-
actions coefficients for quadrupoles defined by

A X 209) = 0, X () = 0 X () = 02/5¢° ,  (2.26)
we find that

uGh = 7 (/7). (2.27)

In contrast to this the three-body triple quadrupole term
of 0(6%) reads'’

06

=9 _
Ta > 540075, T, Woglay, as, ag) , (2.28)

where (ay, a;, a3) are the internal angles of a triangle
of sides 7y,, 713, 723 and the function Weglay, az, ay) is
in Ref. 17. We also note that the two-body quadrupoler
quadrupole term of O(6*) is!

a2 =L (64/rY) . 2.29)

Relations (2.27)-(2.29) are all we need to write down
fo, f5,2, and £§, in the free-energy expansion (1.1):

o'r §=%ﬁpjgi’é(r)ﬁgg, dr , (2. 30)
8 f32=% zpjglz(r)u"’ (2.31)
0°r%=p%° jgfas(ﬁa s 135 Vas)tondradry (2.32)

where gfz and gfzs are the two- and three-particle corre-

lation functions, respectively, of the reference system
and 8=1/k7T. Combining (2. 30) and (2. 31) and making
use of results (2.27) and (2.29), we get

7268
6°fe+0°f2,= jgm[ 5r1oﬁ+—4§ﬁ3]dr (2.33)

which implies that at the level of two-body forces, the
quadrupole—quadrupole interactions to 0(6%) are equiva-
lent to an effective temperature-dependent potential
vE99(y) given by

0P9%r) = - H6*/7'008 + 2% (/7982 ,

in which a partial cancellation of terms is already pres-
ent.

(2.34)

i1l. NUMERICAL RESULTS FOR QUADRUPOLAR
MOLECULES WITH SPHERICAL CORES

We restrict ourselves here to a calculation of the
change in free energy of hard spheres when quadrupole
interactions are present. Our basic assumption is that
this is given accurately by (1.2), which makes it neces-
sary for us to evaluate only the two- and three-body
contributions to 0(6*) and 0(6%). For the system of in-
terest (nonpolarizable hard spheres with point-quadru-
poles) there is a characteristic length which is the hard
sphere diameter g and a characteristic energy which is
8%/»°. It is convenient now to use the reduced variables

x=pa®, y=v/a, and t=kTa"’/6*, 3.1)
which enables us to write (2. 30) and (2. 31) in the form

HS HS

694 g 14x1rI1 (x) 8 7964529’6[1 (x) (3. z)

5¢2 t
and
60 _144x7l{P(x) _ 1. 846487xI (x)

where

I73(x) =f £75(, x)y*"dy (3.4)

1

in which g¥8(y, x) is the hard sphere radial distribution
function. Accurate Padé approximants to this integral
for several values of =6 to n=24 (with the unfortunate
exception of n=15) have been discussed in an earlier
paper.! For I% (x) we have already suggested the ap-
proximation

_1 0. 139665x+0 030805x>
- 0.374023x

and for I (x) we obtain, by the method described in the
Appendix of Ref. 1, the Padé approximant

I55(0) = 0.0925527x
12 "120.737104x + 0. 144938922

10(x)

(3.5)

(3.8)

The calculation of the three-body integral in (2. 32) is
not quite so simple because of the presence of the three-
particle correlation function g{g’, = gt5 for hard spheres.
Barker, Henderson, and Smith!® have shown that the
corresponding integral for the triple-dipole potential
may be estimated accurately by using the superposition
approximation for gigy together with the Percus—Yevick
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TABLE II, Various estimates of ITQ/6400, all of which assume the superposition approxima-

tion.
Eq. (A4) Virial 0(x%) Padé (2,2) Padé (1,3)

x Exact g(r) PYg(»)* Exact g (r) PYg,(») PYg,(r) PYg, ()
0.4 0.2162 0.2124 0.2131 0.2102 0.2143 0.2119
0.6 0.3376 0.3320 0.3277 0.3200 0. 3456 0.3278
0.8 0.5100 0.5093 0.4864 0.4710 0.5784 0,4856
0.9 0,6153 0.6252 0.5850 0.5644 0. 7699 0.5764
1.0 0, 7280 0.7621 0.6977 0.6709 1.060 0.6687

*The “extended virial” (3.19) reproduces these results to within 0.3%.

radial distribution functions. We have done something
similar for the triple-quadrupole integral in (2. 32); the
chief difference being that we have used the density ex-
pansion for the exact and Percus-Yevick radial distribu-
tion functions to obtain the corresponding density expan-
sions for the triple-quadrupole integral to O(p?) from
which Padé and other approximants were derived. The
details of the method, which are given in the Appendix,
are also useful in the evaluation of the three-body terms
due to other combinations of dipoles and quadrupoles, a
matter which we hope to take up in a forthcoming paper.
For the pure quadrupole case, we can write (2. 32) as

6 26 539296 8 ’
BE°fs = 6400 81312, 713, ¥23) WngdTzdry 3.M
= (x%/6400¢ )IES (x) , (3.8)
where
135= (g8, 5, I Wio(R, 5, V) dsar (3.9)
in which
R=ry/a, s=vy/a, r=ry/a, (3.10)

and
W pq=WaoR™%s™r™
={- 27 +220cosa, cosa, cosas +490cos2a; cos2a;
X cos2as +175[cos2(a; — ap) +cos2(as — as)
+cos2{ay - ay)[}R™5s™5™° .

In (3.11) &3, a2, and as are the internal angles of a tri-
angle of sides R, s, and . In the Appendix we have
shown that I'ig(x) has a density expansion

(3.11)

IB(x) =g+ hx+ oyt +Jgx>+o oo, (3.12)
where
Jy=547°=532.959 (3.13)

and the coefficients J;, J,, and Jy, when evaluated with-
in the context of the superposition approximation, are
given by

J, =42 _ 3841n2=1287.35, 3.14)
_1534.00 (exact)

J2=1447.97 (Percus—Yevick)’ (3.15)
~1110. 66 (exact)

J3=1025.65 (Percus—Yevick)’ (3.16)

where the qualifications “exact” and “Percus—Yevick”
refer to the use of the exact or Percus—-Yevick radial
distribution functions in the definition of Ipg(x). This
leads to the following density expansions for I q(x).

I3=65A(x) = 532,950 +1287. 35x + 1534. 00x°

+1110.66x%+ .. , (3.17)
I5854(x) =532. 959 + 1287. 35x + 1447. 97x°
+1025. 85x%++ o | (3.18)

where the superscript SA stands for the superposition
approximation.

We have also attempted to extend these expansions to
higher densities by forming (1, 3) and (2,2) Padé approx-
imants to (1/x)[I1q—Jy]; the numerical results are
summarized in Table I and Fig. 1. None of these is
very successful when judged by the correct results ob-
tained directly from (3.9) and the superposition approxi-
mation using the exact or PYg(r)'s in place of their den-
sity expansions. To do this we again use (A4) given in
the Appendix, evaluating the kernels which contain the
distribution functions numerically and splitting the range
of integration as shown there into two parts from R =1 to
2 and from R=2 to . With such a variety of results it
is difficult to choose between them without any additional
criterion for elimination, but we have settled on the PY
plus superposition approximation (as Barker et al. have
done for triple dipoles) as an adequate representation of
the correct I1q since the virial expansion is easily ex-
tended empirically to fit the numbers to within 0. 3% up
to x=1.0. An expression which does this is

I58A ~532.959 + 1287. 35x +1447. 97x°

+1025. 65x°%+558. 30x* +25. 0x° . (3.19)

We will call this the “extended virial” equation; it makes
our subsequent work, especially in Sec. IV, much sim-
pler and, of course, it has the correct zero density lim-
it. By using it in (3. 8) we get

BO°FS = (x2/£%)(0. 083275 + 0. 201148x + 0. 226245x°

+0.160258x° + 0. 087248x* + 0. 003906+°) .
(3.20)
It is now possible to assess the importance of the var-
ious quadrupole contributions to the free energy of
spherically symmetric molecules. For the sake of no-
tational brevity it is useful to define
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1.0 T T T T
x2 I_T‘Z
6400 Padé (2,2) Exact
0.8 ~
Padé (2.2) PY
o6t “
Extended Virial PY =/,
0.4} -
Virial Exact 0(x3)
Virial PY
0.2F o3
l L 1
0 0.2 0.6 1.0

X

FIG. 1. Comparison of various estimates of the triple-quadru-
ple term % /6400. The labels “exact” and “PY” refer to
the use of the exact and Percus—Yevick distribution functions,
respectively, in Iyq when the superposition approximation is
assumed.

60 T T T T

t=0.25

201 BAf(S)

-60 L L

1
0 0.2 0.6 1.0

FIG. 2. The free energies of hard spheres plus point quadru-
poles calculated to different levels of approximation at ¢=0.25.
The label SAf® refers to the Padé approximant given in (3. 23),
while BAFY and BAF'® are the quadrupolar free energies to
0(6%) and 0(6%), respectively. The curve marked fAf %G’ repre-
sents the free energy to (6%) when only two-body interactions
are counted while the three-body terms and those of higher
order are ignored.

_ 1 ] I ]
3'OO 0.2 0.6 1.0

X

FIG. 3. The free energies of hard spheres, thus, point quad-
rupoles at ¢ =1,96 and 1. 09, respectively. See caption of Fig.
2 for details.

AFW =grs (3.21)
Af® =94f§+9°fg,2+96f§ , (3.22)
and
A9 =64 P31 - 0%(rS, o+ FO/64 P (3.23)

These free energies are plotted against the reduced den-
sity x in Figs. 2 and 3 for £=0.25, 1.09, and 1.96. At
the two lowest temperatures Af §°’, which is the sum of

the two-body quadrupole contributions to 0(6°),

Af® =gt f]+6%F3 , (3.24)

is also plotted.

Some comments on these results, the details of which
are available in Figs. 2 and 3 and Table IIl, are in or-
der. First, it is obvious that the necessity to form the
free energy Padé Af® is greater the lower the temper-
ature; this is in line with the observation made by Rush-
brooke, Stell, and Hdye® for dipoles. The three-body
free energy term is relatively smaller for quadrupoles
than for dipoles, but the total free energy contribution of
0(6®) is greatly enhanced by the two-body term of the
same order, which is comparable in magnitude, and of-
ten even greater, than the three-body term of 0(6%). For
dipoles, the corresponding two-body term, as discussed
in Sec. II, is zero. The situation is so completely dif-
ferent here, that when the temperature is high, the free
energy Padé is nearly equal to A fé“’, which ignores the
three-body quadrupole term and the need for a free en-
ergy Padé altogether; this is probably a numerical ac-
cident, but it emphasizes indirectly the lessening impor-
tance of the three-body terms at high temperature, in
sharp contrast to its behavior at low temperatures. Fi-
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TABLE 1II. Perturbation-theory and Padé approximant esti-
mates of the quadrupole contributions to the free energy of hard
spheres with point quadrupoles.

x ﬂoffza ﬂg%z Be(_a‘fad ﬁAf(G) ﬁAf(’)
t=0.25
0.1 -=2.219 1.103 0.0677 —1.048 —1.453
0.3 —8.156 4,197 0.9736 —2.985 ~4.992
0.5 —16.76 9.02 4,256 —3.489 -9.356
0.7 —-29.14 16.55 12,90 0.3173 =14.49
0.8 —37.20 21.79 20,81 5.398 —17.34
0.9 —46, 86 28.37 32.35 13.86 —20.41
1.0 —58.43 36.66 48,77 27.00 —23.73
t=1,09
0.1 —0.1167 0.0133 0.0008 ~0.1026 —0,1042
0.3 ~0.4291 0, 0506 0.0117 —0.3667 —0.3746
0.5 —0.8819 0.1088 0.0514 -0,7217 —0.7463
0.7 —=1.533 0.1997 0.1557 ~1,177 —1.244
0.8 -=1.957 0,2629 0,2511 —1.443 —1.550
0.9 —2.465 0.3424 0.3903 —-1.732 -1.900
1.0 —3.074 0.4424 0.5885 —2,043 —2.302
t=1.96
0.1 —0.0361 0.0023 0.0001 —0.0337 ~0.0338
0.3 —0.1327 0.0087 0.0020 —0.1220 —0.1228
0.5 -0,2727 0.0187 0.0088 —0.2452 —0.2477
0.7 -0.4740 0.0343 0.0268 ~0.4129 -0,4199
0.8 -0,6053 0.0452 0.0432 —=0.5169 -0.5282
0.9 —0.7624 0. 0589 0.0671 - 0.6364 —0.6543
1.0 —0.9507 0.0761 0.1012 —0.7734 - 0.8013

nally we would like to add that our results are not sig-
nificantly affected by the use of (3.19) for I;q, the
three-body term. If we had used either the virial series
(3.18) or (3.17) instead of (3.19) or the (2, 2) Padé ap-
proximant we would have, as Table IV indicates, essen-
tially the same results, so that we think the three-body
term has been treated with fidelity here.

One additional point of interest is that the quadrupolar
free energies at our highest temperatures £=1.09 and
1.96 correspond essentially to what is present in a sys-
tem of molecules interacting as Lennard-Jones particles
with point-quadrupoles embedded in them such that 6*
=(8%/€0®)' /2 =0.83 and T*=£T/€=0.75 and 1. 35, respec-
tively. Here € and o are the usual Lennard-Jones pa-
rameters and the connection between T*, 6% and ¢ is
provided by (3.1) and

(DN -5 6) -

t“(e 6% \a/ 6*%\g) 0% "
The magnitude of 6*=0. 83 is the one appropriate for
CO, (see Table I in Ref. 1) so that the difference between
AF and AF% at £=1.09 and 1.96 is essentially the
error in the free energy of our model CO, at T*=0.75
and 1. 35, respectively, when the terms beyond those of
0(6*) are neglected.

(3.25)

IV. A TREATMENT OF NONSPHERICAL
MOLECULAR CORES

In the above discussion, it is assumed that the refer-
ence-system pair potential 2°(1 2) is spherically sym-
metric, so that the reference-system pair distribution
function g1 2) can be written as a function of =11,
—1r;). Thus g°(1 2)=g%(»). If v°(1 2) is not spherically
symmetric there will be in the free energy per particle

F/N = f additional terms of the form

2 .
A= 2 [0 2w aae), @.1)
where \,w, is the dipole—dipole interaction, A,w, the
quadrupole—quadrupole interaction, etc. Such terms of
order u?, u8, etc., are surely present in the free energy
of real polyatomic molecules, which do not have spheri-
cally symmetric cores.

One can imagine coping with this lack of spherical
symmetry in several alternative ways. One of these,
which has already been explored by Gubbins and his col-
leagues, *° involves the introduction of the asymmetry in
the form of anisotropic overlap terms. This method has
been described elsewhere, !? and we have nothing to add
to its development in this paper.

A second possible method is based on the notion of a
hypothetical system that is thermodynamical equivalent
to the system of interest, with an orientation-independent
but temperature-dependent potential energyl'7 that in-
cludes n-body terms, n=>3. Using this method with a
potential v(1 2)=v"(1 2) +Zxrw,(l 2) where v™(1 2)#4) ,(»),
one has an equivalent two-body potential v§%r), an equiv-
alent threé-body potential v§%r, R, s), etc. One can then
choose v§%r) as the reference potential associated with a
new reference distribution g3%r) and take 2,302 as the
perturbing potential. In the free energy of this new ref-
erence system one already finds a term of order 3,, and
the main burden of this theory reduces to the (formida-
ble) task of finding v§%r), g3%r), and the corresponding
free energy accurately. The further contributions from
the 2,302 cannot be expected to be small, but one can
hope to handle them adequately using Padé techniques
and a superposition approximation, just as one can han-
dle the n-point terms for the Stockmayer potential and
dipolar spheres. This method takes us somewhat afield
of the first two sections of this paper and we shall not
pursue it further here.

There is a third method that can profitably be used in
conjunction with the development we have already given,
however. It is based partly on the notion we have dis-
cussed in the previous paragraph and partly on the use
of straightforward perturbation theory in the »;, which
has already been discussed in this connection by Sand-

TABLE IV. Comparison of approximations for 86%§ and paf ¢
evaluated using two different estimates of Iyq which make use
of PYg(») and the superposition approximation,

Baﬁfso ﬁAf(’)
x Padé (2,2) Ext virial Padé (2, 2) Ext virial
t=0.25
0.7 13.93 12.90 —-14.24 - 14,49
0.8 23.69 20,81 -16,74 —17,.34
0.9 39.91 32.35 -19,07 —20,.41
1.0 67.85 48,77 -20.95 -23.73
t=1,09
0.7 0.1680 0.1557 —1,236 -1,244
0.8 0.2858 0,2511 —-1.529 -1.550
0.9 0.4815 0.3903 —1.847 -1.900
1.0 0.8187 0.5885 —-2.180 —2,302
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ler.® The use of this latter theory that we envision de-
parts from that of Sandler in our handling of the higher-
order terms; we propose adding to the term given in
(4.1) a Padé approximant that employs the use of an “ef-
fective” spherically symmetric v3(r)*", with its param-
eter adjusted to take account of the asymmetry of the ac-
tual »°(1 2). This method is a kind of hybrid, with the
notion of an effective symmetric vg(r)'“ used to evaluate
the higher-order A, terms, but not the term linear in »,.
Its chief advantage over the full use of the effective-po-
tential idea is simplicity; by explicitly subtracting out
the term of order X, one can hope to do justice to the.
higher-order terms in A; by employing a relatively sim-
ple effective vg(r)“‘ that is X independent. For example,
one might use a vg(r)’" that is defined by the blip-func-
tion method® or the variational method?? applied to

v%(1 2). If one tried to use such a v2{r)*"! to evaluate the
term of order A;, however, one would automatically get
zero. The chief advantage of our proposed method over
an attempt to do a straightforward evaluation of the high-
er-order terms in A; is again simplicity. By introducing
the v3(»)*!! one can take over our earlier methods and
results for a spherically symmetric reference potential.

We have done just this for the two homonuclear diatom-
ic models of chlorine and nitrogen discussed by Sand-
ler.?® He had derived an expression for the free energy
BAf to O(6%),

BAf=BAfo)+BAS,,

where B(Af,), is the reduced excess free energy of the
reference system of rigid diatomic molecules which is
also the free energy of a hypothetical hard sphere sys-
tem of diameter d. We take this to be accurately ex-

pressed by the Carnahan and Starling equation of state

BAfo)g=1s4 ~3n,)/(1 - n,)°, (4.3)

where n,=§rpd®. Sandler’s term of O(6?) is given in our
notation by

BAf3)g=3nlx/DIB) . (4.4)

Here x and ¢ are defined in (3. 1) but with the difference
that @ is now the diameter of one of the atoms in the
homonuclear diatomic molecule. The function I{3) has
been calculated by Sandler for several values of the re-
duced density j defined by

B=pVa=fmpa® (1 +3L% - {L%)

4.2)

(4.5)

where V,, is the volume of the diatomic molecule and L*
=L/a is the reduced center to center distance which is
approximately 0. 6 for Cl, and 0.4 for N,. The relation-
ship between the atomic diameter g and the effective mo-
lecular diameter d as a function of density for a given
L* is known, so that all the information necessary to
calculate the two terms is available. For the terms be-
yond BAf,, we use our free energy Padé Af*? of (3.20),
with the effective diameter d employed in the calculation
of Af, as the appropriate hard-sphere diameter in the
definitions of the reduced density and temperature x and
¢, respectively. Calling the free energy computed in
this way (Af'’),, we have

BOS = B(Afo)y+BAS,+BASfD), . (4.6)

The relative magnitudes of these terms for chlorine
and nitrogen at the experimental critical point, boiling
point, and melting point can be seen in Table V and Fig.
4. From our analysis of the higher-order terms it fol-
lows that they are opposite in sign to the term of 0(6%),
and the net effect of the term represented by (af*), is
comparable in magnitude to Sandler’s Af, at high p. The
latter is negligible in the gas phase, but strongly influ-
ences the free energy of the liquid phase. We wish to
emphasize that these computations are preliminary in
nature and were undertaken simply to get an order-of-
magnitude estimate of the effects of nonspherical cores
relative to the effects of the ideal polar terms. One im-
portant aspect of real molecular interactions entirely
left out of these results is the effect of the attractive dis-
persion term. (In Part II of this work® we shall continue
the study of ways in which our results can be used in
treating models that incorporate features lacking in our
previous work. )
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TABLE V. Comparison of the Padé free energy pAS with
Sandler’s calculation of BAf, for chlorine and nitrogen at the
critical point, boiling point, and melting point of each substance.

Chlorine (L*=0.6, 8=6.14x10-28esu cm?)

. T=172°K 239°K 417°K

P BAS, BAf®  paf,  par®  paf,  pay®
0.1 -0.01 -0.21 -0,01 -0,11 -0.01 —-0.04
0.2 -0.02 -0.51 -0.02 -0.27 -0.01 ~0,09
0.3 0.00 -~ 0,95 0,00 —-0.52 0.02 —-0.18
0.4 0.13 -1.57 0,10 -0,86 0,06 -0,30
0.5 0,50 -2,41 0,36 —1.34 0.21 —-0,48
0.6 1.46 -3.54 1.05 -2.00 0.60 -0.72
0.7 3.32 —=5.02 2,40 -2.89 1.64 -1,07

Nitrogen (L*=0.4, 8 =—1,52x10"2%¢sucm?)

. T=21°K T7°K 126 °K

b BAS, Bar'®Y  paf, BAF'P  pAf, saf®
0.1 —-0.01 -0.53 ~-0,00 -0,04 -0.00 -=0,02
0.2 -0,01 -1,29 ~0,00 -0.11 -0.00 -0,04
0.3 0,02 -2.29 0.01 -0.20 0.00 -0.08
0.4 0.14 -3.61 0,04 -0.33 0,02 -0.13
0.5 0.49 —~-5,.28 0.13 -~0.51 0.08 ~0,20
0.6 1.20 ~7.43 0.32 —-0.76 0.20 -0.30
0.7 -10.20 -1,10 —0.44
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FIG. 4. The free energies of nonspherical hard-core plus point-quadrupole molecules according to Eq. (4.6). The molecular pa-
rameters L* and 0 in the figure to the left correspond to N, while the parameters in the figure to the right are for Cl;. The three
temperatures in the figures are the experimental critical point, boiling point, and melting point for Ny and Cl,, respectively.

manuscript with us, and in particular for uncovering an
algebraic error therein.

APPENDIX. THE DENSITY EXPANSION OF THE
TRIPLE-QUADRUPOLE INTEGRAL WITHIN THE
CONTEXT OF THE SUPERPOSITION APPROXIMATION

Using the superposition approximation
ngS(R, 8, 7) =g(R)g(S)g(‘f) (Al)

and bipolar coordinates in (3.9), we have

ITQ(x) = 81[2 j:‘g(R)Rd.R J;” g(s)sds

R+s
<[ gt Wial®,s, viar (A2)
R=s
where the density (x) dependence of the integral arises
from the corresponding density dependence of the radial
distribution functions g(R), g(s), and g(r). For hard
spheres, we follow Sinanoglu, '*and write the integrals
over s and » as the sum of two terms within the interval
1<R<2, and as the sum of three terms (Fig. 5) in the
range 2 €R<w=. These correspond to integration over
the regions 11’ and ITI in the lower figure and over the
regions denoted by I, II, and III in the upper figure. To
see this, define the indefinite integral

Klg; [g)])= r g (r)W(R, s, r)vdr , (A3)

where the functional dependence of the integral on the
radial distribution function g(¥) is explicitly denoted by
writing it in square brackets. The integral depends on

ISRsé

FIG, 5. Integration intervals used in the evaluation of the
triple-quadrupole integral Izq for quadrupolar hard spheres
agsuming the superposition approximation,
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the variables R, s, and q, where ¢ is the upper limit of
integration. Then (A2) can be written as

IR = 81r2f{n’(n ; [g(s), gD
+1I(R; [g(s), 2]} g™ (R)RAR
+87° 5: {1(R; [g(s), gl +TI(R ;[ g(s), g)])
+II(R;[ g(s), g gB¥(R)RdR , (Ad4)
in which
R=1
IR ;[ g(s), gr)]) =£ {KR +s[g0n)])
- K(R-s;[gr)}g™(s)sds , (A5)
R+l
(R; [ g(s), gD = J; KR+ [g)
-K(;[ g0} e™5(s)sds (AB)
' (R; [g(s), gr)) = jR (KR +s;[g)

-K(1;[g)]tg™(s)sds , (A7)

M(R; [a(s), g0)]) - L tl{K(R +5;[g@))
- K(s - R, [glr)])}g™(s)sds . (AB)

For the density expansion of the various distributions
functions we have, for example,

g%B8(R)=0, R<1
=1 +Z g.(R)x™, R>1 (A9)
m=l

which leads us to the density expansion for the integral
I75(x),

Ix) =dg+ fyx + TP +dgx® + 0o

where

(A10)

= 8a fl “IR; 11, 1) +IGR; [1, 1)} RaR

+8,,z£"{1(3;[1, 1)+ 1(R; [1, 1]) + M(R; [1, 1)} RaR

(A11)
with related expressions for the coefficients J,, J;, Jy,
etc., which are discussed below.

Before proceeding further, it is useful to examine the
kernels K{(q;[ g(r)]) more closely when g(r)=1. By using
the cosine theorem to express the various angles a,, a5,
a3 of Wqq in terms of the sides of the triangle R, s, 7,
we have!”

W 1q(R, s, 7) = (1/4R%s%°)[245+%% ~ 630cr'°
+45(6¢% + @’ + 20ci4c? + 382)r°
+9(8c* +24c%% + 3d*)r* — 90cd(4c?
+3d%? + 35d*(6c% +d?)] , (A12)

where c =R?+s® and d=R%~ s®. On carrying out the in-
tegration in (A3),

K(q;[1])=1R%s"49¢° - 210cq® + 45(6¢° + d%)q
- 20c(4c® + 3d%)g™! - 3(8c* +24c%4% + 3dY)g™d
+18cd*(4c® + 3d%)g™ - Bd*(6c +dP)g™"] + L, (A13)

where L is the integration constant. Now the crucial
point, which leads to a considerable simplification in the
following argument, is that one finds

KR-s;[1)=K(s-R;[1]))=K(R +s;[1])=L , (A14)
which leads immediately to
HR;[gls), 1) =10(R;{g(s), 1]} =0 . (A15)

We find that expressions like (A14) and (A15) are true
not only for the triple-quadrupole term, but for all the
other combinations of dipoles and quadrupoles which can
be placed at the corners of a triangle. The validity of
(A14) for triple dipoles was first shown by Sinanoglu. **
It is obvious from the argument which leads to (A15) that
we may replace g(s) in (A15) by any well behaved func-
tion, so that in particular

UR; [1,1]) =1(R; [ g1 (s), 1]) =TII(R; [1,1]) =T(R; [ g3 (s),1]) = O,

(A16)
where g,(s) is the coefficient of x in the density expan-
sion of g™(s). [See (A9).] We then have, from (A11),
that

2 ©
Jo=a1rzf n'(r;fa, 1])RdR+8n3f 1I(R; [1, 1])RdR ,
1 2

where (A17)
R+l
m(R;[1, 1])=L_1 {L - K(1;[1])} sds (A18)
and
, R+1
I (R;[1,1])=£ {L-KQ; 1} sds . (A19)

For the triple-quadrupole potential,

K(1; [1]) =£R™®s"[ - 3552 + 18(5R? + 7)s'® ~ 15(3R* + 6R? +17)s®
- 4(5R®+9R* + 15R® + 35)s® - 9(5R®+ OR* + 15R?
+35)(R? - 1)s* + 30(3R* + 6R% + T)(R? - 1)%s?
- T5R*+N(RZ-1)°] + L, (A20)

which on substitution in (A18) and (A19) and integration
leads to

H(R; [15 1]) =0
and
'(R; [1,1]) =1 (5R® - 36R + 48R™! + 64R™Y) .

As required by the defining relations (A8) and (A7),
II(R;[1, 1]) and II'(R;[1, 1]) are continuous at R =2.
Hence, we are finally able to reduce (Al11) to

(A21)

(A22)

2
J°=3-,;2£ ' (R;[1, 1)R4R (A23)
which with the help of (A22) leads to
Jop=547%=532.9586 (A24)

(It seems pertinent to comment here that (A21) is true
not only for triple quadrupoles but for all other combina-
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tion of dipoles and quadrupoles, except for the triple-
dipole term!)

The extension of these arguments to calculate Jy, J;,
Jy, etc., is tedious but straightforward, if we make full
use of (A15), (A16), (A21), and (A22). One easily sees
that

2
i =24112fl '(R; 1, 1])g,(R)RAR , (A25)
where the factor 3 in 247% comes from the three ways in
which a gy bond can be drawn parallel to the sides of a

triangle. Since it is known that
giR)=%r(1-3R+%4R%, R<2
=0, R=2 (A26)
we find that
Jy = (82 - 384 1In2)r®=1287. 349 . (A27)

In extending the above argument to J, and Jg, we also
make use of the fact that g,(R)=0 for R>3. The results
for triple quadrupoles are

2
%i[ 1'(R; [1, 1])g:(R)RdR

2
+ fl 11 (R; [ g1(s), 1)gy(R)RAR (A28)
and
2
-2 f 'R [g1(), 1])ga(R)RAR
3
+2L 1(R; [ 2,(s), 1])e(R)RAR
2 1
+£ ' (R; [1, 1])gg(R)RAR
1(2_,
+§£ L'(R; [g1(s), &1(")])g (R)RAR . (A29)

The calculation of the kernels II'(R;[g,(s), 1]), etc., in
(A29) for a hard-sphere system requires a great deal of

TABLE VI. Summary of integrals which contribute to J; and J3
using the exact and Percus—Yevick g,(R) and gy(R) coefficients
in the density expansion of the pair correlation function g(R).

Ja
2 2
z4#f (R; [1, 1), (RIRAR 24#L IY (R; (g4(s), 1Dgy(RIRAR
1
415,308 (exact) 1118, 6888 {exact and PY)
329,324 (PY)
Jy

2 3
487r2J; ' ®; Lgy(s), 1Dg, (RRAR 487r2j; 1(R; lgy(s), 1Dgy(RIRAR

879.371 (exact) 6.3863 (exact and PY)*
724.662 (PY)

2
241|2fII'(R; {1, 1)gs(R)Rdr SWZJ; I'{(R; [gy(s), g1(r) g (R)RdR
1

—120. 023 (exact) 344.932 (exact and PY)

—50.326 (PY)

*Numerical tabulations® of the exact and PY g,(R) between R=2
and 3 are identical.

tedious algebra, but is otherwise not very difficult.
From (A7) we have

I'(R; [g1(s), 1]) = fl M{K(R +s; (1D

- K(1,[1]D}gi(s)sds (1 <R <2),

(A30)
in which the upper limit of integration can be replaced

by 2 since gi®(s) =0 for s > 2. Making use of (Al4),
(A20), and (A26) we find

'(R; [g1(s), 1) =n {§BR* - R + & +  In2)R™
+ (481 _ L 1n2)R"3+ (342 - 81n2)R™S
+ (P -2 m2)R" + G - B n2)R% .

Similarly from (A8) we have (a31)

(R; [g1(s), 1])

(7 R 55 10D - KO3 [ Dl (a32)

where again the upper limit of integration can be re-
placed by 2 for a hard-sphere system. On carrying out
this integration we obtain

5 . 39 [277 5_(2)]-1
W(R;[e1(s), 1]) = ”{3072" *5127 | 1024 " 161" R

15 1937 17 2 )] -3 63 .
TR [768 4 (R—l R+ 16

—=+=1In
+[———8143 - §§ln<—————2 )]R‘s +4~32R"°

1024~ 8 "\R-1 48
5823 45 2 o 409 g
[512 Pk (R 1)]R TR

[133'73 6651< 2 )]R“’
1024~ 16 "\R-1

-16(R - 1)'13'9} . (A33)

A check on these expressions is provided by the require-
ment that 11'(R;[g,(s), 1]) and O(R;[ g,(s), 1]) are exactly
equal at R=2. For the last kernel

I'(R; [g1(s), &1 (#)])

R+l R+g '
=j sgils )dsf rWro(R, S, 7)g(r)dr , (A34)
1 1

each upper limit of integration can be replaced by 2 for
a hard-sphere system. Then by going through the same
routine algebra as before, we have

o'(R; [g1(s), &)
=2 { 3888 R® - 12881 R + (1B + R In2)R™
+ (38 22 102)R + (482 - ¥1n2 + § (In2)))R™°
+ (A + Bin2 - (2R + CHE - 258 1n2

+35(1n2)?)R"%} . (A35)

We now have all the information necessary to calculate
the one-dimensional integrals in (A28) and (A29). For
22(R) and g4(R) we use the tabulations of Ree, Keeler,

and McCarthy?® and obtain the results given in Table VI
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by numerical integration. A few of the PY results in-
volving g,(R) were confirmed analytically. Our final
results for J, and J; are

- 1534.0 (exact)

= A
72 1447.97 (Percus-Yevick) (a36)
and
1110. 66 (exact)
= A
Is 1025. 65 (Percus—Yevick)’ (a37)
where the analytic result for J,(PY) is
(A38)

Jo(PY) = [ S90EGRR0ET 1552087 1102 + 33 (1n2)7] .
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