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A molecular theory of electrostriction arising from the study of dipolar adsorption at a wall in the presence of
an electric field is described. The quadratic hypernetted chain (QHNC) approximation for the wall-particle
closure is the first of the hierarchy of approximations generated by the hypernetted chain equation (HNC) to
predict electrostriction; the mean spherical and linearized hypernetted chain fail to do so. It is found that the
simplest bridge diagrams which are ignored in the HNC (and QHNC) approximations must be included if
quantitative agreement with the thermodynamic theory for electrostriction as described by Kirkwood and
Oppenheim is to be obtained. These bridge diagrams have been evaluated analytically resolving the above
discrepancy in the term of O(E?), where E is the local electric field. The statistical mechanical approach has
also been extended to evaluate a few of the contributions of O(E*) in electrostriction. Conditions under which
the linear constitutive relation between the polarization density P(c0,E) and the electric field E is recovered
are discussed; its extension to include nonlinear terms in E is also considered.

{. INTRODUCTION

This paper discusses a molecular theory of electro-
striction and polarization density which arises from a
study of the adsorption of dipoles at a wall in the pres-
ence of an electric field. Isbister and Freasier! have
considered the adsorption problem in their study of the
mean spherical approximation (MSA) for the wall-par-
ticle and particle~particle interactions, and this has re-
cently been extended by Eggebrecht, Isbister, and
Rasaiah?® to the linearized hypernetted chain approxima-
tion (LHNC). The electrostriction effects that we are
about to discuss first arise when the next step in this
hierarchy of approximations is taken for the direct and
pair correlation functions; namely the quadratic hyper-
netted chain (QHNC) approximation. The leading term
in the relative change in density Ap/p} is of order E?,
where E is the magnitude of the electric field. By con-
sidering the next few terms in the sequence of approxi-
mations generated by the hypernetted chain equation
(HNC) one can systematically evaluate the terms of or-
der E*, E°, etc. To make these calculations exact, how-
ever, one must also include the bridge diagrams of the
appropriate order in E2, E*, etc. that are ignored in the
HNC approximation. Our paper discusses the evaluation
of the bridge diagrams to O(E?) and O(E!) in the electric
field, and to the lowest order in the fluid density and di-
pole moment of the fluid molecules.

The change in density at an infinite distance away from
a flat wall on the microscale set by the particle diame-
ter is found to be independent of the inclination of the
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electric field to order E%. The leading term of O(E?)
can also be obtained from a thermodynamic argument,
with respect to which our statistical mechanical an-
swer is consistent. There is however no corresponding
thermodynamic analysis of electrostriction to O(E*),
which would require details of the nonlinear contribution
of the electric field to the polarization density P. An
investigation of this problem has therefore also been
initiated here,

In Sec. II of this paper we discuss the theoretical
preliminaries which include a relation between i} ()
and c3y(~), where #};(») and c}i(~) are the total
and direct correlation functions for the wall-particle
interactions at =< averaged over the angular coordi-
nates of the fluid particles. SectionIHItreats the closures
at the QHNC level, and beyond, for the wall-particle
interactions and in Sec. IV we consider the bridge dia-
grams of O(E?) and O(E %) which contribute to electro-
striction. The polarization density in open systems is
investigated in Sec. V and our conclusions are sum-
marized in the last section. An appendix provides ad-
ditional results on the statistical mechanics of these
systems, a second discusses a relation for. the electric
field E, generated by the wall-dipole (2, 32), and a third
discusses the evaluation of a bridge diagram of O(E$).
A summary of our principal results for open systems,
without the detailed theoretical analysis in this paper,
has been published elsewhere.?

tl. THEORETICAL PRELIMINARIES

We employ the technique introduced by Isbister and
Freasier! to generate an electric field at the wall by
taking the following limit of a binary dipolar system:
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Here p,, R, and m, are the density, radius, and dipole
moment of species 2, with corresponding definitions for
species 1, R, =R,+R, is the radius of the excluded
volume and E; is related to the electric field E, pro-
duced by the “wall—dipole”, which resides at a distance
- from the wall, through the equation!s

E,=E(3cos?0,+1)!/%¢, . (2.2)

In Eq. (2.2) ©, is the angle which the wall—dipole makes
with the normal to the wall; the inclination @ of the
electric field with this normal is related to ©, by the
equation!+?

cosa=(2cos0,)/[(3cos?0, +1)/%] . (2.3)

The limit R, /R, -« that we consider here is a con-
venient device for generating, on the microscale set by
the particle size R;, a flat wall through which a spatially
constant field is emanating, However, it is important
to recognize that the limit can equally well be thought of
as a shrinking of the fluid particles of species 1 as they
become elements of a “continuum” fluid exterior to a
spherical macrocavity of diameter R,, at the center of
which there is a macroscopic dipole. This is the way
the limit would be perceived by an observer observing
on the scale of R,, which becomes the macrosecale of
continuum dielectric theory. It is this picture there-
fore that we must use in making contact with the equa-
tions of continuum theory in relating the applied field
E, to the macroscopic field. The subsequent large-z
limit that we shall consider below (where 2 is the normal
distance from the cavity wall into the fluid) defines a do~
main that macroscopically remains next to the outer
surface of the spherical macrocavity (since z/R,=0 for
all z after taking the R, /R, - limit) even though on the
molecular scale of Ry one moves arbitrarily far from
the flat wall as z/R; ~ . Once field dependence is ex-
pressed entirely in terms of the Maxwell field E rather
than the applied field E;, one expects the dependence on
details of the boundary geometry to be lost, for a pre-
scribed E, as one lets z —«. In terms of prescribed
E,, macroparticles of different shapes would give rise
to different relations in the z -« limit, however. (This
must be kept in mind in using the results of Refs. 1 and
2, which are given only in terms of E,.)

The density profile p, (z, E,, §;) of the fluid dipoles
at a distance z from the wall is related to the limiting
behavior of the total correlation function hyy(ry, @2, $24)
as p,~0 and R, ~«. Interms of the distance z =7y
— R,, the density profile is

pilz, By, 91)=p?[h21(z, E,, )+ 1] ’

where our definition of h,(z, E;, 8;) and its asymptotic
properties requires p) to be the bulk density in the ab-
sence of an electric field. The bulk density in the pres-
ence of an electric field, averaged over the orientations
of fluid molecules, is

(2.4)

pl(ao’ EZ)Eﬁl fpl(w, Ea; Ql)dgl (2. 5)

=pd[nf (e, B)+1], (2.6)
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where

1
(2, Ez)Eﬁ fhg;(Z, E;, 2,)d9, , 2.7
and Q =47 for linear molecules and 87 for nonlinear
molecules.

The relative change in bulk density, which measures
the electrostriction effect, is our primary quantity of
interest; from Eq. (2.6) this measure is given by

Ap/Pg=hé"1(°°y E2)=Kh ’ (2.8)

where K, is zero when the MS and LHNC approxima-
tions are applied to wall-particle closures, but turns
out to be a positive number beginning with the QUNC
approximation. Our calculations, however, proceed
through the corresponding asymptotic limit for the
angularly averaged direct correlationfunction

1
chlz, E=g [ cule, Ba, Qa0 . (2.9)
Defining K,=c¥(», E,), we shall soon show that
Kh=Kc /Q ’ (2. 10)

where Q is the inverse compressibility of the bulk fluid
defined by
0
Q=1-24 f cunlrigy Ry Vo) drigddfy . (2.11)
In Eq. (2.11), c1,(7y,, 8, &) is the direct correlation

function for the bulk fluid, which has the invariant ex~

pansion, *
cnlri, R, Q) =cii(r)+cfi(n,) D(1, 3)
+ofy(rg) AL, 3)+---, (2.12)

where only the first three terms are retained, in keep-
ing with the definition of the QHNC approximation. 6

The relation (2. 10) may be derived starting with the
Ornstein-Zernike relation for a binary nonpolarizable
fluid in the limit p, - 0. On integrating this with respect
to the orientations of the bulk dipolar particle 1, and
after carrying out the angular convolution, we find for
nonpolarizable molecules (see Appendix A) in the
QHNCA

Hfi (7, Q) =chilry, @)
+pY hfilra, Q)% ciilrsy) (2.13)
where

AxB= fABdra. (2. 14)

If the wall limit is taken, and bipolar coordinates are
employed, we have

nhi(z, Ep)=c#ilz, E;)+ pr‘l’

X J_w dyn$i(y, E,) fl;—,l dsscii(s) ,
(2.15)

where c¥(z, E;) is a wall-particle direct correlation
function, and cf;(s) is the spherically symmetric part of
the particle—particle direct correlation function. When
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zz0and y<0, hf(y)==1, and |z -yl =2 -y, so that
the integral from -« to « can be written as

©

j ) dy (v, E,) | dssciy(s) = JQ dsc§i(s)z -s)s

le~y

| avmaty, B [ asse(s) . (2.16)
0 le=yl

To proceed further, we anticipate the result derived in

Sec. HI which shows that ¢f(», E,) is nonzero. This

implies through Eqgs. (2.8)~(2.10) that &% (=, E,) is also

nonzero and allows us to partition 4%(y, E,) as follows:

hg‘l(y, EZ) =Kh+ AhZI(y, Ez) ’ (2- 17)
where K, is the asymptotic limit of 2%(y, E,) and
lim Ahal(y, Ez)=0 . (2. 18)
yo”
When z > 0,

hfi(z, Ep)=ch(z, E,)+ 270} j ds(z = s)c§,(s)s+2mp?
2

X{ fo [Kh+Ah21(y9 E,)]dy J:_yldsscfl(s)}-

(2.19)
By splitting the range of integration over y

© ry ©
j dy...:f dyc--.*_J‘ dy.--,
0 0 e

and changing the order of integration, we find
dsscgy(s)

va?an dyf
0 le=yl

4 £ g+s
=2mpl K, [I dssci(s) (I dy + f dy)
0 £=S z

+ fm ds(z + s)scf,(s)]

(2.20)

(2.21)

=4mpl K, [r dssici (s)+ % I ) ds(z - s)scfi(s)]
0 £
(2.22)
=K{(1-@)+21plK, J‘c ds(z = s)sc(s) . (2.23)

Taking the limit z -« of Eq. (2.19), we have

K=K +K,[1=-@Q]+1lim 270} [fo Any(y, E,)dy

xf“ .

2=yl

dsscfy(s)+(1+K,) f‘ ds(z - s)scf,(s)] .

(2.24)

By splitting the range of integration again into two parts, and
making use of Eq. (2.18) and the fact that limg. . c{;(s)
=0, one finds that the third term of Eq. (2.24) is zero.
The vanishing of the last term in the limit of large 2z re-
quires further details of the asymptotic behavior of
ciils). Taking® ¢;,(12) ~ = By, (12) + A,03,(12) +. .., we
find ¢3,(s) ~ — Bufy (s) + A {Af1 () + § [RA ()P + 2 [RE ()P
+...}. Since k,(s) and Afi(s) are both short ranged [of
the form e™**s™ cos(as + #)], the long ranged hf(s) con-
tributes Z[#{)(s)F as A,s™ to the limiting form of ¢f,(s).
Finally in the fourth term of Eq. (2.24)

4709
lim | ds(z-s)4ps°=lim{-A, /122%) =0,
g Jg FEyd
Hence
K=K, +K[1-Q], (2.25)

from which Eq. (2.10) follows.

The total and direct wall-particle correlation func-
tions hy(z, E;, 24) and c,(z, E;, ;) are expanded as

ho(z, By, ) =h§y(2)+05(2)D(2, 1)

+ri(2) a2, D+..., (2.26)
calz, By 1) =ch(2)+cp(2)D(2, 1)
+eb(2)Aa2, 1)+... , (2.27)
where
D(2, 1)=5§, (375 72 —=U)*5, , (2.28)
A2, 1)=5,-5,. (2.29)

Here §, and §; are unit vectors in the same directions
as m, and m,, T, is a unit vector along the line joining
the wall-particle 2 and the fluid particle 1, and U is the
unit tensor. Since the wall dipole resides at a distance
minus infinity from the surface of the wall, 7, coincides
with the unit outward normal % to the wall. Again only
the first three terms in the expansion for the wall-par-
ticle correlation functions are explicitly represented
here, since the coefficients outside of D(2,1). turn out
to be not required in our investigation of electro-
striction. A result of central importance to our dis-

cussion is that!:?

n2i(2) = kD (2) + 3K,y (2.30)
where hJ(z) is short ranged; hence

1 () =3K,, . (2.31)

The constant K, in the QHNC approximation is related
to the electric field through the relation? (see Appendix
B)

Bmy E,

= 0 3
W KZI [on(zKu Pt R 11)

X nPifn) =Gy | )
where 8=(kzT)1, k; and T are the Boltzmann constant

and temperature, respectively, and @, are inverse com-
pressibilities defined by (with R,, =2R,)

Q.(2Ky pYR}y) =1 - 2Ky pf f cii(7, 2Ky p}) 4nriar ,
0

(2.33)

Q(- Ky p1RY) =1+Ky; pf Jo cnlr, =Ky o) dmridr,

(2.34)

in which the functions c¢f;(r) are linear combinations
defined*® through the relations

e =[ef (N +3 (0] /3Ky, , (2.35)
e (7) =[Ef1(7') - Cfl(r)] /3Ku ’ (2.36)
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where the “hatted” function is given by

AP =ch(r)~3 J' ds st efi(s) . (2.37)
r
The inverse compressibilities @, and the constant K,

also appear in the expression for the dipole moment of
the fluid:

41””2 po

SEAT (2.38)

=Q.(2K p{RY) - Q.(- Ky o} RY) «
Unlike Eq. (2.32), Eq. (2.38) is quite general® since it
rests only on the asymptotic form of ¢,,(r) in the absence
of a field.

Rasaiah, isbister, and Stell: Nonlinear effects in polar fluids

tIl. ELECTROSTRICTION

The HNC closure for the wall-particle correlation
function is

c(2, V=hr(2, 1)-1ng(2, 1)-8U(2, 1), (3.1)

where we have abbreviated ¢, (z, E,, ;) by ¢(2, 1) etc.
and

U2, )=U(2)=E, m 5, ,
g2, =n(2, 1)+1. (3.2)

Using Eq. (2.26) in the logarithmic term, and ex-
panding this up to the quadratic term, one finds in the
QHNC approximation® that,

c(2, 1)=h3(2) —1ngs(2) - BU 31 (2) + 5 (2) (1 = g5, (2)1) D(2, 1)+ BE, - my§,

r RN - g (YD) AR, 1)+ [

On integrating over the angle £, and dividing by &, we
have

cki(z, E;)=h(2) = ng§(2) - BUS(2)

i {[—Zg:g—;] (3c0s%0, + 1) +[£,§1(%)]2
(z)_fz géz()z ():}E cos?0, — 1) }+ (3.4)
In deriving Eq. (3.4) we have used the following results
| S ipe,np - Beozfarl) (3.5)
f—‘%k [a@DF=%, (3.6)
& A(z,l)D(z,1)=9—°3§23—9£—1—) . (3.7)

For completeness we include a further integral which is
required later

fil-;;l[p(z,l)]* - QEM (3.8)

In the limit when z -, h%(z) is zero, leaving the
asymptotic form of ¢}, in the QHNC approximation as

3 K
cfile, Bp)=Ky=1n(1+K,)+ 3 HTZKL,,? (3cos?@, +1)

=Ky -In(1+K,)+ 2 FmiES /[(2Q.+Q.)
x (1+K,) - 3K,F . (3.9)

Using Eq. (2.10), the contribution of the term of order
E?% to electrostriction is

2) :
K@ =%_=%K§1(3cos262+1)/Q TQ—"LZ Zi

(3.10)

H(2P D2, 1)°+21(2) k5 (2)D(2, DA, 1)+I(zFA2, 17 ]

205, (2)
(3.3)

r

where the superscript (2) means the term of O(E?), It
should be noted the electrostriction effect is independent
of the direction of the electric field to the order EZ con-
sidered in Eq. (3.10). In Egs. (3.9) and (3. 10)

Q(2K,, p? R},) and Q(~ Ky, p} R},) are abbreviated by @,
and Q. respectively.

It is convenient, as usual, to define*‘®
y=(4n/9)p} mi B , (3.11)
and to rewrite Eq. (2.38) as
3y =Q.(2Ky, 0} RY) - (- Kyy o} RY,) . (3.12)
The dielectric constant ¢ is given by’
€=Q,(2Ky; p{R})/Q.(= Ky 03RS, . (3.13)

The € here is the E-independent € of linear theory.
Making use of Eqs. (3.12) and (3.13), we have

3y[(2e+ 1) /(e =1)]=2Q, +Q. . (3.14)

Finally the relation between the external field E, and the
Maxwell field E can be expected to be of the form, for
6,=0, 8

=[3/(2¢+1)]E, +bEZE,+... , (3.15)

[where the contribution of O(E,) is independent of ©,]
and our result for electrostriction to O(E?) (which is
thus also independent of 8,) is

Ap Km_[ B (€-1)2E2]
pT "7 T [ 24mp]y Q

There are two contributions to electrostriction of O(E*):
one from the term of O(EZ) in Eq. (3.10) together with
the b coefficient in Eq. (3.15), and a second from the
contribution to K, of O(E}) not shown in Eq. (3.10) to-
gether with the first term of Eq. (3.15). We restrict
our attention here only to the second of these contribu-
tions but plan to return to the first after a more de-

(3.186)

J. Chem, Phys., Vol. 75, No. 9, 1 November 1981

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Rasaiah, Isbister, and Stell: Nonlinear effects in polar fluids

tailed study of the b coefficient for our problem.

To obtain the term of O(E}) to K,, it is necessary to
go two steps beyond the above QHNC approximation in a
systematic expansion of the logarithmic term of Eq.

(3. 1); the first step beyond the QHNC approximation pro-
vides no additional information when 2z -« because
[ (a9,/9)[D(21)P vanishes. From the next step we find

3K%,(3 cos?@, + 1)
2(1+ K, ¥

K =c¥(>, E;)=K,-In(1+K,)+

81K 4 2
+Em311{—h)—4(3cos ez+1)2 , (3.17)

where we have made use of Eq. (3.8). The first two
terms K, —In(1+ K,) arise from the spherically sym-
metric part of Eq. (3. 3) when 2z ~« (#,(z)-~K,). From
Eq. (2. 32) the numerators of the remaining terms are
of order E2 and E}, respectively.

For small values of the electric field, we can ex-
pand In(1+X,), (1+K,)%, and (1+K,)™*. Retaining terms
of O(E}), we have

K,=K,Q=K%/2+3K2(3cos%0, + 101 -2K,+...)
+(81K3,/20) (3 cos?0,+ 1) . (3.18)

Solving Eq. (3.18) for K,, we obtain for the electro-
striction effect of order E} the expression

3x 814 10 5
4)  OX 01X -

K =25 *20Q (1 9Q *18&) ’
where x=K%,(3cos’0,+1). Using Egs. (3.11)-(3.15), we
can recast this expression in terms of the dielectric
constant as

(3.19)

Ap=4)=[ﬁ _:zz ﬁa 1)t
-Blr K —zz”—plu;(( 1Y°E +W(€ 1)E

(-3
9Q " 18¢%)|@ -
These results arise from a systematic expansion of the
HNC closure for the wall-particle correlation functions,
which ignores the bridge diagrams in the wall-particle
correlation functions. The inverse compressibility @
of the bulk dipolar fluid is however not restricted by any
approximation, i.e., it is the exact result, In the rest
of this section, we analyze the contribution of the term
of O(E?) to electrostriction from the QHNC approxima-
tion,

(3.20)

Kirkwood and Oppenheim? discuss the thermodynaxﬁic
derivation of electrostriction to O(Ez) in an open system
which leads to

Ap B (b€ \E*
_5?”817(35?>Q . (3.21)

The derivation of Eq. (3.21) assumes that the polariza-
tion density P(r) in an open system is linearly related
to the electric field at r by the constitutive relation (e

independent of E)
P(r)=(e-1)/47E(r) , (3.22)

which ignores nonlinear effects that are necessary to
extend the thermodynamic theory to higher order in

4

E. The thermodynamic approach to electrostriction
can be compared with the results of statistical mechanics,
for the term of O(E®). For our result of O(E?) to be
consistent with Eq. (3.21) we must have

P} [0/8p7] = (1/3yNe - 17 . (3.23)

This self-consistency test is indeed obeyed exactly by
the simple Debye equation

(e-1)/(e+2) =y, (3.24)

but beyond that, if for example one uses for dipolar hard
spheres

(e-1)/(e+2)=y-(15/16)y*+... , (3.25)

an inconsistency arises in the term of 0(y%). To be
specific

o [8€\ _(e+2Py ( _ 45y )
Py <8—p¥) = 3 1 16 +.ue y (3.26)
and
(€=1° _(e+2)Fy (1_ 155 )2'
3y 3 16 ' °°
_(e+2Fy 3042
e (1_ 2 +) (3.27)
Jepsen’s'® derivation of Eq. (3.25) has been confirmed

recently by Rushbrooke!! as being exact through O(3®)
in the pf - 0 limit, Thus we are led to suspect that Eq.
(3.23) is inconsistent because the bridge diagrams to
O(E?), in the wall-particle correlation functions, have
been ignored. A discussion of this follows.

IV. THE BRIDGE DIAGRAMS

If we call the terms neglected in the HNC approxima-
tion [Eq. (3.1)] (i.e., the bridge diagrams) B(2, 1), the
leading contribution to c¥ is

3
By (2, 1)=2o<)31 , (4.1)
4
where
gg=h2, 1), (4.2)
and
3
4}315c(x1, X3, X.), (4.3)

in which e(x;, x;, x,) is the three-particle direct cor-
relation function for the bulk dipolar fluid and x; =(r,,
2,). The open circles O are root points, the half black
circles @ indicate angular integration over the molecular
orientations, and the full black circles (field points) @
indicate both spatial and angular integrations. The sym-
metry number of the graphs represented by Eqs. (4.1)
and (4.4) is 2, When z—-, A(2, 1)~K,+ 3K,,D(2, 1).
Employing the wall limit, one sees that the term of
O(E?) in B§(2, 1), when z~ is
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3
2&:::} 1, (4.4)
4
where
52 = 3K, D(2, i) . (4.5)

The corresponding term of O(E*) in B¥(2, 1) when
2z~ has a similar graphical representation, except that
the bonds connecting the wall-dipole 2 to the field points
3 and 4 are K2’ bonds. We will evaluate analytically the
contributions of these graphs to lowest order in the fluid
density p? and dipole-moment squared mé. To do this,
we replace the three-particle direct correlation functions
c(x, X;X,) by the corresponding Mayer f bonds f(X,;, X,).
The decomposition12 of each f bond into reference f,
bond and the sum of products of dipole bonds multiplied
by (1+ f,) is émployed. In summary

c(xu X3 x,‘)zf(xl, xa)f(x39 x4)f(x4’ xl)*‘o(P?) ’

(4.6)
where
SRy, %)= folrg )+ [1+ folry )] E (B D(z’; ly)/rL)
(4.7

To the lowest order in the fluid dipole moment squared,
it is necessary to retain only the first term in the sum,
Denoting [1 +fy(7;,)] by ey(r;;), we have

2 .o
FRir X))~ Folry )+ €o(7,) Bi;%‘—’ﬁ .

The term of O(E?) derived from Eq. (4.4) will be con-
sidered first before discussing the term of O(E*).

(4.8)

A. The term of O(E?)

Using Egs. (4.8) and (4.6).in Eq. (4.4), and recogniz-
ing the fact that the angular integration of an odd num-
ber of D functions at a vertex is zero, we find that

B¥*(2, 1)=Ix(2, 1)+Ix2, 1), (4.9)
where
1%z, 1)=A J’ a9, f dr, di, f dr, d2,D(2, 3)
XD(Z, 4)f0(rs4)¢(".31)¢(7'14)D(39 I)D(ly 4)
(4.10)

=_S_2_04 fdrudﬂade(Z, OD(2, 3)fylry,)H (3, 4),
(4.11)

A
I¥(2, 1)=B_mf fdnx Idrsdﬂs fdr4dQ4D(2, 3)

X D(2, 4) d(rye) folrs) folr)D(3, 4), (4.12)

where
0
ua, 9=5 [ a, [ ar, 005006, DetnIo(, 9,

(4.13)
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A =98%mi(plPKE, /293 ,

and ¢(7,,)=eory,)/7;. !
of angular and spatial convolutions of dipolar bonds®

H3, 9)=Hp(r,)D(3, 8)+Hy(r)AE, 4).  (4.14)
From the work of Hgye and Stell*®, and Rushbrooke!!

Following the standard analysis
11=-13

A 20° - ~

2Hp(rse) =H,(73) = "'!;J' j drys dlry) olry) ,  (415)
where the hatted functions are defined by

K= -3 [ Hs)stas, (4.16)

r

and in particular, for dipolar hard spheres!®:!!

dlr, ) =[folri)/RY] (4.17)
where R,, is the diameter (=2R,) of the spheres. We

confine further analysis to the case of dipolar hard
spheres with Q =47, although the above treatment [ex-
cluding Eq. (4.17)] is quite general.

Distinguishing the term in Eq. (4.11) that arises from
the A term of Eq. (4.14) by I'f,(2, 1) and the cor-
responding D term of Eq. (4.14) by I#(2, 1), we have

I1,(2, 1)= é?‘ f drsy Hu(73) fo(734)

x f a9, 2, D(2, 3)D(2, 4)A(3, 4), (4.18)
and

IH2, )= %(? f dryy Hp(73,) fol7ss)

x J S, d2, D(2, 3)D(2, 4)D(3, 4) .

(4.19)
In Eq. (4.18),

2
E_EE jdr“ Idr“f°(rl3)f0("u)fo(7’41)

321%2‘( 5112Rn)

11

fdru Hy(r54) fo(7se) =

0
__1_53 r (4.20)

where the double integral in the first line of the above is
identified as the third virial coefficient for hard spheres.
The remaining angular integrals in Eq. (4.18) can be
reduced to

Q2 2
[ a9, [ a2,p@, D@, DA, 4= (3050, +1).

(4.21)
Combining Eqs. (4.18), (4.20), and (4.21),
- 92 2 1
152, 1= AQ Sgﬁrz (3 coz 0, +1)
= 51172 mi(p}PKE (3cos®O,+1), (4.22)

wherein the value of A has been used. From Eq. (2.32),
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and Eqs. (3.11)—(3.15), we can reformulate I7,(2,1) in
terms of €, E, and y as

5 (e-1FE*gy

I%2, 1)=- 128 -—‘n’p?_ .

(4.23)

The analysis of Eq. (4.18) is simijlar with slight
modifications. The angular integrals yield

[ an, f a2,D(2, 3)D(2, )D(3, 4)

=% . BRh-U)- (P iy —U) BAR+1U)- 3.
(4.24)
Substitution into Eq. (4.19) leads to

IH(2, )= sa (3nn - U) . (377 -U) - [ fdr34 Hp(7r34) fy

X (736)(3F3y ¥y — U)]- (3a7-U)- 3, . (4.25)
Employing [ drs,=[g drs, 73, [ d7,, and the identity
f AV44(3F34 73, = U) =0 (4.26)
gives
152, 1)=0. (4.27)

The calculation of 1#(2, 1) is very similar to that of
I#(2, 1) and will not be repeated. The result is

I¥2, 1)=0.
Hence the only nonzero contribution to R{#*(2, 1)
comes from 7§, (2, 1) and
5 (e-1)PE%sy
128~ 70 ‘

(4.28)

Bi#*(2, 1)=~ (4. 29)

On adding this evaluation of the bridge diagram to the
QHNC electrostriction term of O(Ez) we have

K(a)"’[ 13(5’1)2 5(€—1)2ﬂy
h 247p] y 1287p9 Q :

. Agreement with the thermodynamic result to O(E?) at
low densities requires that instead of Eq. (3.23) we
have

o(5) 52

which is consistent with Eq. (3.25) to 0(y?).

{4.30)

—% (e=1)y , (4.31)

B. The term of O(£*) arising from the corresponding
term of O(£%)

The bridge diagram of O(E}) in the low density limit
with z - can be written as the sum of two terms as
follows:

BY*(2, 1)=g#2, 1)+J3(2, 1), (4.32)
where

JHE2, 1)= 1_(212,3_)_ fdﬂ, fdﬂs fdm Idr3 fdr4

X fol7s) fol741) fo(71g) (4.33)

__ 5Pl R (K'Y (4. 34)

12 i

and

52, 0-EEE gty [0, [ a0, [ o,

x [ ar, [ ario(n) D01, 300D, 9)

X¢(T41)D(4, 1) ? (4. 35)

where we have again utilized the vanishing of the angular
integration at any vertex of an odd number of D functions
in reducing B{**(2, 1) to the sum of only two terms. By
a straightforward (albeit lengthy) extension of the pre-
vious convolution techniques used in evaluating I§,(2, 1)
and 1§,(2, 1), we found (see Appendix C)

(5

These results should be added to the term of O(E*) given
in Eq. (3.20). To our knowledge, there is no available
corresponding thermodynamic result of O(E*).

JH2, 1=z 1r2p (4. 36)

V. POLARIZATION

We shall consider the polarization in an open system
described by chemical potential y, volume V, and tem-
perature 7.

The polarization density P(r) is related to the partition
function E of the grand ensembie in an external field E,
by the functional derivative’

-1 5InE

SE,(r) @ f‘ml
xpy(r, Eu(r), €,)m,(,) (5.1)

For the adsorption of molecules at a wall, the position
vector r is replaced by the scalar distance z from the
wall. Also the external field created by the wall dipole
is, in our investigation, constant and independent of
position, i.e., E,(r)=E,. Therefore

Plr, Ez(r)] =g

Plz, E))="0 fdsz, iz, Eqy 9)56,(82,) (5.2)

0
= mapl fdnl hz1(Z, Eg, Ql)gl(al) ’ (5. 3)

where we have used Eq. (2. 4) for the density function
and employed the identity [ §,(2,)d®, =0. The polariza-
tion density profile is determined by wall—particle total
correlation function, hy;(z, E,, &), which contains the
effect of the external field and the effects of the correla-
tions between the bulk molecules. Substituting the in-
variant expansion of Eq. (2.26) for &, in Eq. (5. 3) gives
the polarization density profile as

P(Z, Ea) =—7n‘5&g’f d91§1(91)[k51(z)D(2, 1)

+hy(z)a2, D+...]. (5.4)
Using the following identities
1 - .
& [ Mus@ae, 0=13,, (5.5)
1 A .
T fdﬂlsl(Q,)D(z, 1)=3(3cos®0,+1)/26,, (5.8)
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and Eq. (2.30), reduces Eq. (5.4) to

0 flgD;(Z) 2 1/2 4
Pz, E,)=myp] { (K + 5 ) (3cos®0,+1)1/2¢,

I
+ hgz—)ﬁ +.. } (5.7
As z—-», hP(z) and h2(z) vanish. Hence,
P, E,)=m, pl K, (3 cos?0,+1)}/%e, (5. 8a)
p} gmiE
[2Q.(2Ky1 p Ri1) + Q.(= Ky oy Ryy) = 3K, /(1 + K’
(5. 8b)

where we have employed Eq. (2.32) in deriving the rela-
tion (5. 8b) from (5.8a). The magnitude of P(», E,) is
independent of the inclination of the applied field, and
its direction is parallel to it. Making use of Eq. (3.13),
this can be rewritten as

-1 3E, 1
ar  (2e+D{1 -[K,/y(1+K,) e -1)/2e+ 1)} °

(5.9)

P(w, E,)=<

When K, =0 as in the MS and LHNC approximations, and
when b and higher coefficients in Eq. (3. 15)are neglected,
we recover the constitutive relation

Pleo, E,)= ‘;ﬂl E(w, E;) . (5.10)

If b and the higher order coefficients in Eq. (3. 15) are
not ignored, nonlinear terms in E will be found even in
the MS and LHNC approximations. In the QHNC and
higher order approximations there are additional non-
linear effects which arise from electrostriction since
K, is no longer zero. In the QHNC approximation, K{*
is given by Eq. (3.10) and on using this with Egs. (3.11)
to (3.13) in Eq. (5.9) we have, after expandifig the
denominator,

-1 3E,
a7 (2e¢+1)

€ 3
Pauncle, E;)= [ 1+ Bnpfﬁyz

e-1\E}
><<2€+1) b—]+0(E§).

This gives the polarization density to O(E}) in the QHNC
approximation where we recall that E; is the external
field. Assuming that the relation between E;, and the
Maxwell field E is well approximated by Eq. (3.15)
with b set equal to zero, we have to O(E®)

(5.11)

_e=1 8 (e-1) E?
Paanc(, E)‘T.,}—E [1+ 24mpyy"  (2e+1) —Q_]
+O(ES) . (5.12)

An exact calculation of the term of O(E?®) would require
the determination of b of Eq. (3.15). In addition, the
contributions of the bridge diagrams to electrostriction
as given first in the form of Eq. (4.29) and second in
the relationship between K,, and E, [c.f. Eq. (2.32)]
must be determined (see Appendix B).

Rasaiah, Isbister, and Stell: Nonlinear effects in polar fluids

VI. DISCUSSION

Although several general treatments of dipolar sys-
tems in external fields have recently appeared! and a
number of earlier molecular treatments of electrostric-
tion already exist,'® our treatment appears to be novel,
complementing rather than overlapping earlier work on
electrostriction and going considerably beyond it for
fluids in the liquid regime, !¢

The discussion in the previous sections demonstrates
the limitations of the MS and LHNC approximations for
the wall—particle correlation functions, since they do
not predict electrostriction. The QHNC approximation
is the first member of the hierarchy of approximations
which are derived from the hypernetted chain closure,
to show this effect even qualitatively, but it is necessary
to include the most elementary bridge diagrams as well,
if quantitative agreement with the thermodynamic re-
sult of O(E?) is to be obtained. Thermodynamics thus
provides a stringent test of our statistical mechanical
approximation theory of dipoles in the presence of an
electric field. Although our calculations deal only with
electrostriction effects at an infinite distance away from
the wall, it would be difficult to imagine that the simpler
MS and LHNC approximations, which fail to predict
electrostriction, can be trusted to provide accurate
density profiles close to the wall.

Another result of our work has been a clarification of
the deviations that can be expected in the linear relation
between the polarization density P(~) and local field
E(»), The QHNC approximation is found to generate
nonlinear terms in E for the polarization density of an
open system. It is clear that additional terms will ap-
pear when better approximations to the wall—-particle
correlation functions are employed.

We conclude with one other observation of the limijta-
tions of the MS and LHNC approximations. The sur-
face excess I'" of dipolar molecules at the wall is given
by

P=é ff[”(z’ E;, ©))—p(=, E;, )]d%dz (8.1)

=1 j(héﬁ(z, E;)-K)dz . (6.2)
In the MS and LHNC approximations, K,=0 and h#(z,
E,) is identically the total wall-particle correlation
function for the reference system usually denoted by
h§1(z). The surface excess is therefore insensitive to
the presence of an electric field when the MS and LHNC
closures are employed. In the QHNC approximation and
beyond, however, the interactions between the electric
field and the dipolar molecules are coupled to hfi(z, E;)
and lead to an increase in the surface excess over that
which is found in the absence of an electric field.

APPENDIX A

'This appendix gives the details of the derivation of
Eq. (2.13). An alternative and more systematic form
of Eq. (2.26) for hy(r,y, ;, ;) is given by Blum and
co-workers*® as

J. Chem. Phys;, Vol. 75, No. 9, 1 November 1981

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



Rasaiah, Isbister, and Stell: Nonlinear effects in polar fluids

hm(rzl, QZ, 91)=ZZ E Z Z: hm‘zl(rm)

m=0 ne0 I1=0 141 «m ljl<n

X O (R Q4 ) (A1)
where
¢:}"1(92’ ﬂl’ ;21)
l N
=2 (" ) ROIDLR) Dh() . (A2)
Hyebyd i T Y
Using the identity
. j %?"L DA821) =840 810 810 (A3)
gives the ©, angle-averaged k3, at finite r,, as
rfi(ry, Q)= Z high (7)) 670482, O, 721) (A4)
my 1,4
(A5)

= E‘ 15031 (720) TR, 0, 731) ,
my

since

m o I
¢Too, = Z < ) D""“{Qa)D:.“(;m) 81 (A8)
m Lo =U

due to the symmetry properties of the 3j symbol. The
Ornstein-Zernike equation for a binary mixture in which
pz—~ 0 is (in & space)

’-zzx(k’ ,, 91)=521(k: 179 91)
dsd. - -
+P‘1) J"ﬁ‘a hoy(k, 25, Q3)cy(k, €5, ;)

(A7)

where

‘t.(k’ Qz, ﬂl)= fdreXp(—ik'r) t(r, 92, Ql) (A8)

for t=hy, c3, and cyy.

Applying [ d®, /Q to Eq. (A7) gives
-z o (4% 5 =
rfi(k, 2)=cfi(k, Q)+p] f 9] hay(k, 9, 24)ci(k, Q) ,

(A9)

where

- asdy -
ch(k, Q)= J =2 ¢y(k, Q,, Q)

o) (A10)

along with similar definitions for i, ¢%.

e(2, 1)=h(2, 1) =Ing(2, 1)~ 8U(2, 1)

= hg1(7) - lng’§1('r) - 3U21(‘r)

+ [hzbl(‘rh &”%]D(Z, 1)+ B4y () A2, 1)—1n[1+

Bir)+ ) (r) D2, D+rfi(r) A2, 1)+,..

4715

For nonpolarizable molecules the radial coeffi-
cients ¢T°%, are neglected for m=1.4® Invariance of
the ¢y, analog of Eq. (Al) to Fourier transform neces-
sarily gives the vanishing of ¢727T;(k) and by symmetry
éemm (k) for m=1, 2, 3,..., =, where

&rony (k) = 4mi™ [ drv%j (k) cTeh () . (A11)
o
From Eq. (A8) with £=cy, Eq. (All) and the above
comments, Eq. (A10) reduces to

¢ (k, 93)=ng?n(k) ’ {A12)
and alternatively in » space
cty(ry 8)=c20,(7) . (A13)

Use of Eq. (A12) for ¢f(k, ;) in Eq. (A9) gives
A - 0 =000 _@_ﬂ_a %
Rt (k, 2,)=cHi(k, 2;)+p)co%, (k) %) ha(k, 95, ;)

=chlk, ) +pl bk, Q)00 (k). (Al4)

Identifying
- 2 - -
conm (k) = j'gn_x f‘%z‘acn(ks 2y, 8;)=cii(k)
gives

hﬁ(k: Qz)=aé‘1(k’ 92)*‘9(1)};?1(“: Q2)2';1‘1(}3) ’

which on inversion back to » space gives Eq. (2.13),

APPENDIX B: THE RELATIONSHIP BETWEEN K,
AND THE WALL-DIPOLE FIELD &,

This discussion follows the derivation of the cor-
responding relation in the LHNC approximation® with
the difference that electrostriction contributes additional-
ly to the ‘wall-particle correlation functions in the QHNC
approximation and beyond. It would also become neces-
sary, in an exact theory, to employ the complete invari-
ant expansions for these correlation functions. How-
ever for us, this step produces nothing new since the
higher-order terms beyond the coefficients of D(2, 1),
are neglected in the QHNC approximations. We begin by
considering the effect of electrostriction on the wall -
dipole field starting with the HNC theory and specializ-
ing finally to the QHNC approximation which yields Eq.
(2.32). The contributions of the simplest bridge dia-
grams to the wall —dipole field are also considered’
briefly.

In the HNC approximation for a binary dipolar fluid,

(B1)

(B2)

J#eens

g‘z"l(r)
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where we use the complete invariant expansions for
A2, 1) and ¢(2, 1);

k2, 1)=h3(r)+H(r)D(2, 1)

’ +hA(r A2, 1)+... , (B3)
c(2, 1) =ci(r)+ci(» D2, 1)
+ch(n a2, D+... . (B4)

The projection of ¢(2, 1)on D(2, 1) is

chn= [ FUEE oz, VD2, 1/(DE2, Pay,a, »

(B5)
where

(D(2, 1¥)q,0,= fﬁ*;fnz-o(z, 1)2=-§ .

Substituting Eq. (B3) in Eq. (B1) we find the D-projected
part of Eq. (B1) to be given by

chi(r)= E’;n:’]_]ﬂ +h5(7)

= 3{{In[1+ B4 (N +KS(r) D2, 1)

(B86)

+hg(r) A2, 1)+...1}D@2, 1, , (87
where in general
('”>01-92= J@%ﬁ& e (B8)

On expanding the logarithmic term, recalling that angu-
lar integration of an odd power of D(2, 1) is zero and
that the terms beyond k2,(»)D(2, 1) are neglected, we
have

ca(r) = m&,ﬂ- + ({1 -[ga(N}

3 {5 [ BN (D2, 1P"Vasa
_2{2[8‘51(7)] (2n+1) ' a}

+higher-order terms , (B9)
where {D(2, 1)2)9192=2/3 as in Eq. (B6), and
(D(2, 1)q,q,=24/25, (B10)
(D(2, 1))g,q,=164/245 . (B11)
The general formula for (D(2, 1)""')nlna is
_ 4ml) o [ 2k
(D@, 100, T Dan + D1 25 ( \ ) - (B12)
In the QHNC approximation we have
B =BT LB ({1 - [ g }ehoo.t, (B13)

where h.o.t stands for higher-order neglected terms.
The first two terms of Eq. (B9) are just those obtained
in the LHNC approximation. We now let r=R,+ 2z and
consider the combined limits p, - 0, R, -« followed by
the limit z -~ =, which gives the asymptotic form of the
wall—particle correlation function. Using Egs. (2.1),
(2.8), and (2.30)

lim ¢ (7) = lim ¢5,(2) = Bm, B + 3Ky, (l_fllf_) . (B14)
]

Ry g

gow
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In the LHNC and MS approximations, K,=0. The reia-
tionship between () and &5 (r) is!®’
- 3 LN
A=) -5 [ o) sas, (B15)
0
where in the QHNC approximation
e = (M1 -gsy(r)'] . (B16)

On taking the limits described earlier, we find that since
23.(2) is bounded and %2, (z) is short ranged,

lim ¢5(r)=0.
Rz"”

(B17)

Combining this with Eqs. (B14) and (B15)

r
3Ky (-1——_51&{”—>+Bm, Eg=- }Qim [ Tg- L cals) Szds]-
2‘@

ge®

(B18)

To evaluate the integral, we proceed as for the LHNC
approximation.? Substitution in the Ornstein-Zernike
equation for a binary mixture followed by the limit p, =0
yields an infinite number of equations as follows:

By(r)=cs(r)+py By x5y +hoo.t, (B19)

BB =200+ B (R« 8f + s i+ iy » SR) +huo.t

(B20)

-~

H(r) =chi(r)+ B (2Rf #3h +hh xef)+hoo.t,  (B21)

In the limit R, -, the z—~«, the higher-order terms
(h. 0.t) are neglected in the QHNC approximation, and in
this limit we are left with the three equations originally
used by Wertheim for the bulk fluid in the MS approxi-
mation. In the same limit we may then take linear com-
binations of Eqs. (B20) and (B21) to get

15 (¥) =ck(r) + Ky pi gy xch (B22)

and our earlier argument® in the LHNC approximation
for evaluating Eq. (B18) goes through unchanged. We
then find

K,
3Ky (ﬁk) + gmyEq = K5y [2Q.(2Ky o} RYy)

- Q.(-Ky P?R:ﬂ)] ’ (B23)

whichwhen combined with Eq. (2.2) yields Eqg. (2. 32).
Since K, is of O(EE) in the QHNC approximation, Eq.
(2. 32) contains terms of O(E3), etc., which lie beyond
the linear relation between K;; and E, obtained in the
MS and LHNC approximations, There are bridge dia-
grams of the same order in the electric field which
contribute to the relation between Kj,; and E,. - The
simplest of these will now be examined.

None of the bridge diagrams that have been considered
in our discussion of electrostriction {Egs. (4. 10}, (4.12),
(4.33), and (4.35)] can contribute to cf(z) and hence to
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the relation between Kj, and E;, since their projections
along D(2, 1) have an odd number of D functions at ver-
tex 1 which vanishes on angular integration. The sim-
plest bridge diagram of O(E}) when z = that does not
have this liability is

3
B2, V= | Ny (z=w), (B24)
4
where
<2>-—_'—§E 3K21D(2, 3)-=- 3K21 §2’(3;l;l"U)'§3 y (B25)
M EK’, , (st)
Qeresertsnnne o =f0(ru) s (B27)
g" """ “1’ =¢(ry) D(3, 1) . (B28)
The projection of this along D(2, 1) is
B, 1= | 0B pye, 1D, 1) (B29)

(1] 2
=-—l—h£41—J-3K2K(sz )zﬁm jmafmxj'drsdns
x j' dr,d2, D2, 3)D2, 1)D(3, 1)

X fo(7sd) folra)d(7gy) (B30)

=3—Kn’—‘ns-(£w’”—ij' a, [ an, | ao, jdralD(Z, 3)

xD(2, DD, 1)gy(ry) 6(ry) , (B31)
where

&i(7rsy) = f dry folrs) folre) » (B32)
but

Jaru= [arusss [ am, (B33)
and

{ a3, 1) [ @(8hy 7y = 0)=0 . (B34)

Hence B7(2, 1) vanishes and Eq. (2.32) is valid beyond
the QHNC approximation when the simplest bridge dia-

grams of O(m2E}) as described above are also considered.

The simplest bridge diagram with a nonvanishing pro-
jection along D(2,1) is

By ((2,1)= 2¢L\L /./"1

which, to lowest order in the electric field, is of

(B35)

4717

O(miE3). Our analysis below shows that the contribution
of the bulk fluid to this projection, as depicted by the
portion of the graph labeled 314, is essentially the third
virial coefficient for the reference system. By a
straightforward elaboration of our argument, it is ap-
parent that all of the higher virial coefficients contribute
to projections of bridge diagrams, of the same order,
along D(2,1).

When z - %, the projection of Bj (2, 1) along D(2,1) is
given by

3K, K, (p))*Bimi
Bbz,1=—1u-%k—1mmdmfdm
lim $4(2,1) ) f z_[ 1f1'3 3 Jdr, dii,

x D(2,3)D(2, 1)D(4, 1)D(3, 4) p(r3) d(rg1)folrsy)  (B36)
_ 3K2,KQ,§,°B’m‘1 [ @, [a, [a@,D(2,3)D02, 1)
xfd":zlfo(?‘st)[IA(Tat)A(sv ) +I(ry)D3, 1)), (B37)

where following our earlier analysis [see Eqs. (4.13)
and (4.14)] of angular and spatial convolutions of dipolar
bonds at vertex 4,

0
B [y a2, 9lr)D(3, Dplr)D(4, 1)

=1,(r3)A(3, 1) +1,(r3)D(3,1) (B38)
and
~ 0 - N
21p(r3y) =1, (ryy) = Eé&fdrutb(‘ru)d)(ru) . (B39)

The argument leading to Eq. (4.26), with 3 4 replaced
by 31, ensures that the second term of Eq. (B37) van-
ishes. Likewise, using the same steps that lead to Eq.
(4.21), we have in the first term of Eq. (B37) the fol-
lowing integral

203

fam, [@, [@,De, 900,106, D=2L . (B40)

Using Eqs. (B40) and (4.17) for ¢(r, ;) in Eq. (B39),
we find that

0y2 4
lim B2 (2, 1) = 4Ky K, (p))*Bimi
e

9RS,

x _/ dry f dr g folra)folrsdfolrsy) , (B41)

where the integral is the third virial coefficient equal to
- 57%R$,/6 for hard spheres.

Erg'Bg" (2, 1)=-8yk, K, ,
where y is defined in Eq. (3.11).

APPENDIX C: A BRIDGE DIAGRAM OF O(£*)-
CALCULATION OF EQ. (4.36)

We make use of the following lemma.:

[
[ arrnnn =253 [ anwire ()
=10 [arf A . (c2)

The first equality is just Paserval’s theorem in which
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the Ith-order Hankel transforms ]‘:,(k) of £,(k) {n=1, 2)
are used,*

The Hankel transform of f,(r) is the Fourier transform
of the corresponding hatted function 7,(»):

TR =F=ar [ " axien i (c3)

where jo(kx) is a spherical Bessel function of order
zero. Substituting Eq. (C3) in Eq. (C1), for n=1 and 2,
and making use of

j e Bo(kex) olky) = 5 = 8x=3) , (c4)

we arrive at Eq. (C2).

To derive Eq. (4.36), we start with Eq. (4. 35) and do
the spatial and angular integrations over vertex 3 to ob-
tain

2)
T3, 1)< ALK FEm)Y f a2, I a9, dr,
2Q
X[ Hp(r14)D(14) + H,(7,,)A(14)] ¢(7,,)D(14) ,
(cs)

where 2 =47 and Eq. (4.15) defines H,(r,) and Hplr,),
with the Hp(7,,) related to Hy(r,,) by Eq. (4.16). The
second term in the sum of Eq. (C5) vanishes as a result
of the orthogonality condition

fda, fdmn(l, 4)A(1, 4)=0. (C6)

For the first term in the sum we need,

fdﬂ, fdﬂm(l, 4)D(1, 4)

ar f AR, 5, (3714 1y = U) - (3P0, 14 = U)- & (CD)

fd91[3”14 (8,8 7‘14+1]—32n2 (c8)
(2)72 2
ST H2, 1)=-"l[£1‘—§]—(£’ﬂ f dry ¢(ry,) Hp(ry,)
(c9)

d(rye) Hplmy)
(c10)

where we have used Eq. (C2) with / necessarily 2 in the
last step. Employing Eqs. (4.15) and (4.17) for Hp(ry,)
and $,(r,), respectively, we find
oL

Ry

01 77 (2
———-—-———[K I Bml)a fdh

J¥(2, 1

X th fdrs‘fo(ﬂs)fo(?’u)f olra) - (c11)

The integral is related to the third virial coefficient

for hard spheres and is equal to ~57°R{;/6. Substitution
in Eq. (C11) leads to the final result quoted in Eq.

(4. 36).
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