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Computations have been made for a system of charged hard spheres with parameters chosen to cor-
respond to an aqueous solution of a 1-1 electrolyte in the range from 0.001 to 1M. Correlation functions
were computed by the analogues of the HNC and PY integral equations due to Allnatt in which the integral
equations are constructed after the Mayer resummation has been performed on the expansion of g(r).
Activity and osmotic coefficients are computed both by the compressibility and pressure equations and tested
for consistency. Based on this test and others, including a comparison with computations published by
Carley, it is concluded that the HNC equation gives very accurate results for this primitive model at least
up to 1. The accurate results show that the effect of the excluded volume of the hard-sphere cores has
been considerably underestimated in earlier treatments of the primitive model.

I. INTRODUCTION

The objective of the work described here is to treat
the simplest model of an electrolyte solution with
sufficient accuracy so that over a substantial composi-
tion range the thermodynamic properties of a hypo-
thetical system constructed according to the model
will be known within limits that are small compared
to the experimental uncertainty in the best measure-
ments on the corresponding real physical systems. While
this is not asking much compared to the magnitude of
the problem of achieving an understanding of the real
systems on a molecular level, it may not be an insignifi-
cant contribution to a field in which the theoretical
contribution of towering importance is only asymptoti-
cally valid in the limit of zero concentration of the
ions.

Our efforts toward this objective have been spurred
by the fact that the underlying theory and computa-
tional methods are now available, having been de-
veloped in applications to simpler systems. The theo-
retical framework we used is an adaptation by Allnatt!
of the integral equation methods that have mostly been
employed in the calculation of the thermodynamic
properties of one-component gases at densities up to
the critical. The same methods have recently been
applied more directly to this problem by Carley® while
the Monte Carlo method, which has also been developed
for computations with simple gases and fluids, has been
applied by Brush, Sahlin, and Teller® only to the model
of point charges of one sign in a uniform background
of the other. We make some comparison of our results
with Carley’s in the concluding section of this paper.

The main importance of the present work lies in the
fact that unless the simplest models are treated exactly,
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the difference between the deductions from the model
and the behavior of experimental systems may lead
to wrong conclusions about the sort of elaboration of
the model needed for more faithful representation of
the real system. This homily has been demonstrated
often enough in the history of the electrolyte solution
field but even so there are indications in the present
work that still another example is upon us.

Because of the validity of the McMillan-Mayer
theory* an expression for the pressure P of a gas as a
functional of the intermolecular pair potential w;(r)
also gives the osmotic pressure of a solution as the same
functional of a certain pair potential function #;°(r) of
the solute molecules. The u:°(r), often called the
potential of average force at infinite dilution, is the
potential of the force acting between 7 and j maintained
at the distance r apart in the pure solvent. We shall take
advantage of the McMillan-Mayer theory to switch
back and forth between gas-like and solution-like
terminology according to what is simplest and clearest.
In particular we use the same notation P for the pres-
sure of the gas or the osmotic pressure of the solution
and shall use the same name, the direct polential, and
the same notation, u,;, for either u;; in the gas or w;®
in the solution. Similarly the correlation function
gii(r) may be the correlation of either the arbitrary
pair of molecules ¢ and j in the gas or the pair of solute
molecules ¢ and § in the solution; also for this the Mc-
Millan-Mayer theory shows that the functional de-
pendence on the direct potential is the same in either
case.

Now we are concerned with a system containing ¢
ions per unit volume of species 1, ¢; of species 2, « -, and
finally ¢, of species ¢. The direct potentials may be

written
wusi(r) =ui*(r) +eei/er, (1.1)
where ¢ is the dielectric constant of the medium (the

¢+ W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276
(1945).
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vacuum for a gas or the pure solvent for a solution). We
assume that the potential energy of an assembly of any
number of ions at fixed locations can be computed by
summing over the direct pair potentials #;;. We also
assume that the non-Coulomb term u.;* is the hard-
sphere potential

ui ()= i r<ey

=0 (1.2)

where the ¢,; are parameters of the model. The first
assumption is essential for the computations we make
while the second can be replaced with others with only
minor changes in the program.

The basic theory for our work is Mayer’s expansion®-®
for the excess Helmholtz free energy per unit volume
Fex,

if a;<r,

—F/kT=(/121) + 2, ¢*Ba(x),

n>2

(1.3)

where # is a set of ions; we sum over all sets of two or
more ions, where

=Moo e,
where

K2=4r Y cie?/ekT (1.4)
t=1

and where the B,{(x) are similar to the virial coefficients
B, in the virial expansion of F* or P for a system of
neutral molecules. The principle difference is that
wherever u;; appears in B, we have instead

(1.5)

in B, (k). As a result whereas the topological description
of B, is in terms of Mayer f bonds,

fi=exp(—ui;/kT) —1,

the topological description of B,(k) is in terms of g
bonds

wii =ui*+eeie " er

(1.6)

qiy=ec;e™ /erkT (1.7)
and 9" bonds
&'=[1+k.;] exp(gi;) —1—quj, (1.8)
where k,; is defined by
ki=exp(—u;*/kT) —1. (1.9)

The term #/12x in Eq. (1.4) is the Debye—Hiickel
limiting law (DHLL) for this function. An approxima-
tion to Fe= that is equivalent in accuracy with a number
of other widely-used approximations is

—Fe/RT= (/120 + 3 3 cie;Bu(n).  (1.10)

=1 j=1

5 J. E. Mayer, J. Chem. Phys. 18, 1426 (1950).
_YH. L. Friedman, Jonic Solution Theory (Interscience Pub-
lishers, Inc., New York, 1962),
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This and the corresponding approximations for other
thermodynamic functions are easy to evaluate; we
shall designate them DHLL+-B, approximations and
make some use of them to represent the rather wide-
spread notion of the exact behavior of the primitive
model treated here. These approximations are also
useful in the simplification of certain computations.
Tables of the DHLL4B, approximations were first
given by Poirier’; others have been given by Friedman,®
but it is easiest to evaluate DHLL+B; by a simple
computer program using the expressions in closed form
for this approximation derived by Meeron.?

II. THE INTEGRAL EQUATIONS

The theory of the integral equations we solve has
been worked out by Allnatt.! The derivation is outlined
here to make the significance of the various functions
clear.

The pair correlation function for ions 7 and j may be
written in the form

gii= (1+ki;) exp(gijtaij). (2.1)

If we suppress a;; and linearize the exponential we have
the Debye-Hiickel correlation function. Meeron® has
shown from Mayer’s ionic solution theory that «,; has
the cluster expansion

as=3 = [ 0Gijimdm),

m>1

(2.2)

where m!=m;!ms!- - - m,!

The integrand Q(ij:m) is a sum of terms, each of
which is a product of certain functions. The product
may be represented as a graph on two root points,
corresponding to ions 7 and 4, and m field points, corre-
sponding to m other ions. These points are connected
by lines (bonds) corresponding to the factors in the
product. The allowed bonds are either ¢ bonds, or &
bonds, and the integration of Q(ij:im) is over the
coordinates {m} of the field points.

Among the terms of Q(ij:m) is every product which
may be represented by a graph with the following
characteristics:

(a) Every vertex of m is connected to both 7 and j
by independent paths.

(b) All field points of m are connected amongst
themselves independent of ¢ and j.

(c) There are no field points connected to the rest
of the graph only by two ¢ bonds.

A few examples are shown in Fig. 1.
When one examines this graphical representation of
the terms of a;; he sees that there is a redundancy that

7]. C. Poirier, J. Chem. Phys. 21, 965 (1953).
8 E. Meeron, J. Chem. Phys. 26, 804 (1957).
9 E, Meeron, J. Chem, Phys. 28, 630 (1958).
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¢ ¢ P
alij:1) = i/\j + / * A\

F1c. 1. Some cluster
y diagrams for ;. The

v VAN '2R" .
+ :'—] P e complete set is shown for
Qfij:2) = i : i

Q(#:1), but only a few

for Q(4j:2) are shown.
Cutting points are indi-
cated by arrows.

enables it to be put in another form. To see this we write
i =Tij+{ij (2.3)
where 74 is the sum of all the terms of Eq. (2.2) in
which the graphs have cutting points and ¢ is the
remainder. Cutting points are field points at which the
graph may be cut into two disconnected parts. Examples
are designated by arrows in Fig. 1. Except for Q(ij:1)
which contributes only to 7., all the Q(ij:m) contribute
some terms to 7,; and some to ;.
Any one of the terms of 7;; may be written as
g
ch/.aikd{lk}lpkaoik*\l’kh (24)
k=1
where & is the species of the molecule at the cutting
point nearest to 7, and {1} its coordinate. The special
notation > here indicates we sum over the species at
the cutting point and do the convolution integral. A
still more compact notation for this term is

0%T,

which represents the ¢® terms obtained from (2.4) by
letting 7 and j be each pair of species in turn. The
analogy to a matrix representation is obvious, and we
use it below with the understanding that the operation
%k is defined by Eq. (2.4).

We now obtain an expression for 7. Let Xy; be the
sum of all diagrams which may be found connecting
two adjacent cutting points & and / of 7;;, except that
the single gi; bond is excluded.

Then, in matrix notation, we have

X=h—q—r, (2.5)
where %;; is defined by
hz’j =gij— 1 (2.6)

and we see that g,; appears in its own cluster expansion
which is the basis of the integral equations which

follow. We may also write
r=A+B, (2.7)

where By, is the collection of all of the terms in 7 in
which the bond connecting 7 to the nearest cutting
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point is a ¢ bond, while A;; is the remainder. Hence

B=gXx(A+X) (2.8)
and
A=X5 (g+X+r)
=X%h. (2.9)

If we now combine Eq. (2.7), (2.8), and (2.9) we have
r=X%h4+gk X+gk Xkh. (2.10)

Allnatt’s integral equation is found by substituting
Eq. (2.5) in (2.10) and then eliminating by use of
Eq. (2.1):

In(14+hy) =In(1+ksy) +qutritis.  (2.11)

Now only ¢ and & are known and we have only one
equation to solve for both % and { unless there is further
information. As suggested by Allnatt,! we employ two
approximations for the missing information:

The analog of the hypernetted-chain equation:
Approximate Eq. (2.11) by

ln(1+hij) =ln(1+kij) -I—q,'j-f-nj. (2.12)
The analog of the Percus-Yevick equation:
Approximate Eq. (2.11) by
In ( 1 +h”) = ln( 1+k”) +q,~,~+ln(1+n,~) B (213)

It would of course be of interest to extend these results
to the analogs of the self-consistent approximations of
Hurst? and Rowlinson* and others, but it seems un-
likely that this would change the general character of
our conclusions.

We have in fact considered three simpler approxima-
tions which do not even involve integral equations. The
first of these is the approximation

In(14As;) =In(14-k5;) +q45

and the others are the w(A) approximation

(2.14)

1Mmeﬂmrww+w+§@/anmmu

(2.15)
and the g(A) approximation

In(1+4hi;) =In(1+k:;) +g:i
+ln[1—l—kz: o j 06 1)d{1} ], (2.16)

Equation (2.14) retains only the leading term
(—u*/kT+q) in the potential of average force, while
the w(A) approximation corrects this to the extent
of adding the first term in the cluster expansion of
a;;, and the g(A) approximation similarly corrects the
pair-correlation function. Of the three, the results of

10 C. Hurst. Proc. Phys. Soc. (London) 86, 193 (1965),
1 J, S, Rowlinson, Mol, Phys. 9, 217 (1965),
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the g(A) approximation lie closest to the solutions of
the HNC and PY equations.

To solve these integral equations we begin conveni-
ently with the g(A) approximation. The sum

) ck/Q(ijzlk)d{l,,}

is the ij element of the lowest-order approximation to
7, call it 7o. Equation (2.16) now yields a low-order
approximation to %, call it k. The next step is to solve
for X, using Eq. (2.5). The sets of functions 4, X, are
now substituted on the right of Eq. (2.10) which is
evaluated to get the first refined value of 7, call it
71. The procedure begun with 7o is now repeated using
either Eq. (2.12) or (2.13) in place of Eq. (2.16) as
appropriate, to solve for % in each iteration until the
functions no longer change when the cycle is repeated.

When the right side of Eq. (2.10) is to be evaluated,
for example in getting 71, we proceed by Fourier trans-
formation and the use of the convolution theorem
which gives an equation of the same form as Eq. (2.10)
except that in place of each function f;; we have its
Fourier transform f; and in place of the operation
f* F we have the matrix multiplication

jreF,
where

c=diag(ci,**, ¢s) (2.17)

is the matrix of the concentrations. On completing
these arithmetic operations in transform space on the
right side of Eq. (2.10), the result is inverted to get
7y itself. The chief aspect in which this iterative pro-
cedure differs from the procedure for solving the original
HNC equation by Fourier transform is in the solution
of Eq. (2.10), where one now has to solve a matrix
equation rather than a single algebraic equation. Except
for this and the need to store more functions, the
numerical procedure is not more complicated than for
the one-component case because the Fourier trans-
formations may be done seriatim.

The procedure described above, if the iteration con-
verges, leads to the exact set & except for the approxima-
tions inherent in the HNC or PY equations. We list
here four kinds of approximations which result from
the numerical procedures we use:

Finite range of integration. The Fourier transforma-
tion integrals

B L
Fos(k) =4r / fos(r) sin(rk) (r/k)dr,

K...
ff.:'(r)=(1/27r2)/0 Jii(k) sin(rk) (k/r)dk, (2.18)

which are properly evaluated for L=« =K, are evalu-
ated for finite L and X instead.

2745

Replacement of integrals by sums. The finite integrals
resulting from the above approximation are each
approximated as a sum over N terms.

Use of ¥orT. A fast numerical procedure (FORT)
for evaluating these Fourier transform sums in the case
N =2, where n is an integer, is applied to the present
case where, for reasons described in Sec. III, it results
in a certain error.

Neglect of round-off errors in the numerical procedures.
As we shall see, in some cases the thermodynamic
functions depend in a very sensitive way on the correla-
tion functions so we may be concerned with rather high
accuracy in these computations.

An essential part of the work reported here is the
effort to evaluate the significance of each of these
approximations; except for this the computation is
quite straightforward. In the following sections we
describe the calculations in more detail and present the
principal results together with the studies of the
approximations.

III. NUMERICAL SOLUTION OF THE INTEGRAL
EQUATIONS FOR g,;(r)

As Broyles? has shown the following discrete repre-
sentation of the Fourier transforms in Eq. (2.18)
preserves the reciprocity between them:

Fi.i(k) =F:.i(mh)
=[4x7/mk] g nfi i(n?) sin(nm7k),
fui(r) =fi5(n¥)
=[k2/2n7] ,,N{i mf: j(mk) sin(nm#k), (3.1)

provided that we fix

Fh=2r/(2N—1), (3.2)
where 7 is the interval in the 7 space and k in the %
space and N is an integer. Thus the upper bounds in
Eq. (2.18) are L=(N—1)7 and K=(N—-1)k.

To evaluate the sums in Eq. (3.1) we have used the
fast Fourier transform FORTRAN program called Forz's-1
which exploits an algorithm for sums of the form

M-l

a(m) =Y u(n) exp(2rinm/M),
=0

(3.3)

where M =2! and [ is in integer. The program enables
us to recover real and imaginary parts of the functions

12 A, A. Broyles, quoted in F. Lado, Ph.D. thesis, University of
Florida (1964).

1 yorT, IBM SHARE Distribution Agency (S.D.A.) No. 3465.
(1;‘6{5.)W. Cooley and J. W, Tukey, Math. Computation 19, 297
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separately and we have, if #(z) is real,

M1

Ima(m) =, u(n) sin(2rnm/M), (3.4)
n=0

which is just of the form of the sums in Eq. (3.1)

except that M =2!is even while 2¥—1 is odd, and M

is the number of terms while 2 is twice the number of

terms. What we have done to employ the FORT program

is to use (3.4) with M =2!=2N, and with
w(n) =nf; j(v7) for 0<nN-—-1
=0 for N<n<L2N-1. (3.5)

Then, for example, for N =2°=512, we need 211=2024
words in the computer core for the Fourier transform
in the PORT operation: 512 each in the real and imagi-
nary parts for #<N and for »>N. This is not very
efficient but it seemed advisable to proceed with the
present calculation before attempting to optimize the
program. The remaining difficulty, that in the argument
of the sine function in Eq. (3.4) we have M =2N in
place of 2V —1, causes an error of almost 1/N in the
resulting transforms. This can be reduced by a perturba-
tion correction but this was found not to be worthwhile.
Of course the same procedure was used for the inverse
transformation in Eq. (3.1).

The computations were done on an IBM 7044 com-
puter with a core of 32 000 36-bit words and cycle time
of 2-psec. With N=>512 the same transforms required
0.91 min by trapezoid rule computation and 0.03 min
by FORT, a ratio of 30; for N =1024 the ratio was 60.
Using 7=0.015/« and N =512, the transform of ¢*/r
obtained by trapezoid rule and FORT were compared:
the results agreed everywhere within 0.1%. The forward
FORT transform was inverted by ForT: the original
function was recovered with an error of less than 0.059,
at each value of » except n=0 where the error was
399%. We can neglect this apparent truncation error
since f; ;(#7) for =0 has zero as a multiplier in the
summand of Eq. (3.1). There is of course also a real
truncation error which is most easily investigated by
reducing it by extending the range N of integration. As
described below, we find that this error is negligible in
the present work.

Most of the computations have been done with
7~0.015/x where « is the Debye-Hiickel parameter.
This interval has been chosen as a compromise between
a longer one which extends the range of integration
and a shorter one which gives a greater density of
sampling points which is helpful for r~a. We find this
compromise together with N=>512 to be satisfactory
for 1-1 electrolytes in water but not for 2-2 electrolytes
in water. In the latter case a larger IV is necessary. The
exact value of 7 must be chosen so that in transforming
any f(#7) there is a sampling point #7 at @, the repul-
sive core diameter, for each of the pairs =4+ +,
+ —, and — —. Clearly this puts a restriction on the
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way the set of a;; is chosen but it is not very serious
with N as large as 512. The program is written to
accomodate more complicated direct potentials than
hard-sphere plus Coulomb, but its use with more
complicated potentials requires that N be large enough
so that one can have a high density of sampling points
wherever there are features of interest in the direct
potential while maintaining a range of integration as
large as that used in the present work, namely L=>511X
0.015/x. In these solutions k! varies from 96 A at 0.001M
to 3 A at 1M.

The trial function, 7, is evaluated by computing the
Q(4j:1;) integrals. We have

(To) ij=§ Cr / Q('L]: 1k)d{ lk}

=&y k B/ —qak qu;
=&k Bri +5(gsiriin)

where the second term has been evaluated analytically,
and the & bond is defined by

&/ =0 +¢is-

The first term in Eq. (3.6) is calculated by Fourier
transformation using the numerical technique we have
just described, and the convolution theorem.

The convergence of the iteration process was followed
by observing the behavior of the thermodynamic func-
tion d Iny,/dec, which was computed at various stages
of the iteration by the procedure described in the follow-
ing section.’® The iteration was stopped when d Iny./dc,
remained constant within 0.001%,. This convergence
is shown for four typical cases in Table I. Tt will be
noted that we did not find it necessary to use any tricks
to get this rapid convergence when the trial function
was chosen as described above., Convergence difficulties
were encountered when the program was applied to
parameters appropriate to 2-2 electrolytes in water at
25° unless the molarity was larger than 0.13/. It seems
that 512 sampling points is not enough for such a
steeply varying potential as we get here when « is small;
under these circumstances it does not seem worth-
while to force convergence by some sort of trick.

A family of correlation functions computed by the
HNC equation is shown in Fig. 2. They are all qualita-
tively similar to each other and similar as well to the
results of the PY equation and to the results obtained
from both equations by Carley.? Even choosing a, 4,
a, —, and a_ _ all different from each other does not
appear to do more than shift the curves along the r
axis.

(3.6)

(3.7)

15 This requires between three and five times the number of
iterations for the convergence of the osmotic coefficient ¢ since, as
shown in Sec. IV, it is related to the first moment of gj, while
9 Invy,/dcy is related to the second moment of this function,
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Tasre I. Convergence of the iterative process for the HNC equation. ay y=a. _=a, _=4.6 &.

d Iny/dc,
Percent difference in d Iny./dc; from the final value of -

the HNC equation for the following number of iterations: From trial Final

function value
Molarity 0 5 6 8 10 1 15 16 gii (A) (HNC eq.)

0.001 —0.420 0.000  0.000 —-16.59 —16.66
0.1 0.974 —0.095 0.000 0.000 —0.4248 —0.4247
0.5 3.780 —0.99 0.000  0.000 0.3019 0.2909
0.9 ~1.557 —35.980 —0.226 0.023  0.000 0.4362 0.4431

8 Final value after 20 iterations,

It is of interest to find whether g;;=g;; when i#; where
for the computed functions. Although this equality -
obtains in principle, some steps of the computation of G= / h(r)4mridr
the integral equations do not appear to be identically 0
symmetrical in the interchange of the particles ¢ and and ¢ is the number density of the one-component
J> and we were quite prepared to find it necessary to gystem. In addition a third method, the use of the
insert a symmetrizing step in the iteration chain. One familiar charging parameter, was considered but not
test for this consistency is to calculate, for the system ysed here since it requires solutions of the integral
with asymmetrical ion sizes, the quantities G;; and Gy equations for many values of this parameter at each
where 5] and G; is defined in Eq. (4.9) of Sec. IV. We  concentration of interest and does not seem to offer any
find that G.;;=Gj, to within 0.019, at each concentration compensating advantage.

for which solutions were obtained to the HNC and The generalization of Eq. (4.1) to multicomponent
PY equations. Thus we have no reason to doubt the gystems is well known. If the direct potential is pairwise
symmetry of the computed correlation functions. additive, as in the model treated in this paper, it is
IV. COMPUTATION OF THERMODYNAMIC P—ckT=Pe=
FUNCTIONS FROM g,;(r) . o Oun
=1 . Y 2
We have computed the excess free-energy functions 6 ; Z‘} CZCJ/O r» gis(r)dmridr, (4.3)

from the pair correlation functions using the generaliza-
tions to ionic solutions of the following equations for
one component systems: the pressure equation

where now ¢ is the sum of the particle number densities
of the solute species in the case of a solution or all species
in the case of a gas, and P is the excess osmotic pres-
_P_ex=i__ —__° w, ou g(r)dmdr (4.1) Sure in the first case and the total excess pressure in the

ckT ckT 6kT J, Or ’ second. In the former case this Pex/ckT is the same as

g : ¢—1 where ¢ is the osmotic coefficient for a system in

and the compressibility equation which the independent variables are T, ¢;+-+, ¢,, and
(RT)"Y(9P*/d¢c)r=~Gc/(14+Ge), (4.2)  u,, the chemical potential of the solvent. The trans-

T T T T T T TapLe II. Iny, (HNC,) —Iny,. (HNGC,).
4.0
elas o wrtiek
ol c =464 g, _=4.64
0.1 0.0002 0.0007
2.0 0.2 0.0005 —0.0001
0.3 0.0008 0.0002
Lol 0.5 0.001 0.001
0.7 0.000 0.000
oo ; | 1 | 1 | 0.8 0.000 —0.001
40 60 80 10:0 120 140 () 160 0.9 —0.001 —0.001
Fic. 2. Correlation functions g;;(») obtained from the HNC 1.0 —0.002 —0.002
approximation at /=0.001, 0.1, and 1M for a 1-1 electrolyte in
HO at 25°C assuming a, .~¢__=qa, _=4.6 A. I is the molar 2 The tabulated differences in Inyy for :20.5M are accurate to only

ionic strength. +0.001,
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TaBLE III. Results of the HNC equation for a 1-1 electrolyte in H;O at 25°C.s

@y y=a__=a,_=4.64 a;,=3.64,a._=564,0._=4.64
¢ dlIny./dec Inyy ¢ d Iny,/de, Iny, ¢
0.05 —1.043 0.9541 —1.020 0.9547
0.1 —0.4207 —0.2101 0.9530 —0.3936 —0.2072 0.9542
0.2 —0.0260 —0.2286  0.9641 -+0.0049 —0.2237 0.9669
0.3 +0.1345 —0.2221 0.9818 0.1829 —0.2136 0.9865
0.5 0.2909 -0.1776 1.026 0.3249 —0.1604 1.035
0.7 0.3789 —0.1099 1.078 0.4220 —0.0848 1.092
0.8 0.4128 —0.0704 1.106 0.4615 —0.0407 1.124
0.9 0.4431 —0.0277 1.136 0.4957 +0.0071 1.156
1.0 0.4710 +0.0181 1.167 0.5269 +-0.0583 1.191

# The tabulated values of Inyy have been obtained through the compressibility equation.

formations of the excess functions from such a system,
which we may call the McMillan-Mayer system, to the
conventional system, in which the independent variables
are T, P, and the solute molalities, have been worked
out® but here we shall only report values in the Mc-
Millan-Mayer system. For the system of charged hard
spheres considered in this study, the expression for the
excess pressure reduces to

P“=—1 i i} ciieie; / ? gii(r)4xrdr

6¢ =1 =1
+3(2rkT) 30 2 cicigis(ai)aid, (4.4)
=1 j=1

in which the correlation functions g;;(a: ;) at the outer
surface of contact are required. Using the multinomial

theorem and the electroneutrality condition

[ L4 g 2
Z Z CiCj6i6j=<Z C,’B,‘)

=1 j=1 =1

=0, (4.5)
the first term in Eq. (4.4) may be simplified further to
obtain the final result

(3 2
2 2 ciciesei Ty

i=1 j=1

Pe== 1
" 6e

+3(27kT) 2 2 ciosgii(ai) aif, (4.6)
=1 =1
where -
Ti= —2maif -4 f hi(Prdr. (47)
The generalization of Eq. (4.2) is shown in Appendix
A to be

v(dInyy/des)r ., =[

where we define co=c¢/v and

Gi=t / s (r) rdr. (4.9)
]

Like other forms of the compressibility relation this
equation does not depend on the direct potential being
pairwise additive. The integrals G;; and T'; were deter-
mined numerically over the range up to L=(N—1)7
by Simpson’s rule, and the remainder evaluated analyti-
cally by assuming %;;=g¢.; for > L.

It is well known that the agreement of the thermo-
dynamic functions computed from the correlation
function by the pressure equation and the compressi-
bility equation is a necessary condition for the accuracy
of the correlation function. To employ this criterion we
compute Iny, by each method as follows.

The function d Iny,/dc, is computed from the com-

o Gy A 2Gy v 36 v v ve (G G- ——G1 2) ]
1+C2(V+G+ ++V_G_. _) +V+V_622(G+ +G_ _—G+ _2) ’

(4.8)

pressibility equation from the results of a given integral
equation with a given model at fourteen different
concentrations, ¢;=0.001, 0.002, 0.005, 0.007, 0.01,
0.02,0.05,0.1,0.2,0.3,0.5,0.7,0.9, 1.0. These d Iny../dc,
values are then compared with those obtained from
the same model by the DHLL- B, approximation. The
difference, call it A(c), is smooth and slowly varying
and easily integrated. Then we have

Iny, () = {DHLL-&—BaH—/: A(c)de, (4.10)

where { } is the DHLL B, contribution to lny.(c’).
It is readily evaluated directly from the defining equa-
tions. This round-about method for integrating
d Iny,/dc, proves to be convenient because the singu-
larity at ¢=0 does not appear and because not many
values of d Invy,/dc, are required for good accuracy.
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Now from the same set of g(r) functions used above
we compute ¢(c) by Eq. (4.6) to obtain Iny,(c’) by
integrating according to

d[c(1—¢) ]+cd Iny,. =0, (T and u, constant)

(4.11)

which is an analogue of the Gibbs-Duhem equation
that is useful for McMillan-Mayer systems or, of
course, for gases. Again the integration is carried out
by actually integrating only the difference between the
integral equation value of ¢ and the DHLL+B; ap-
proximation to ¢.

In Fig. 3 we show Iny, as a function of the square
root of the molar ionic strength I. These functions
have been computed by both methods from a given
model using the HNC, PY, and g(A) equations. It is

TasLE IV. Study of the effect of the range of integration.
System: All a;;=4.60 A, 1-1 electrolyte. Primitive model with
the dielectric constant of water at 25°C. #=0.015/x.

Molarity 0.1 0.5
N
512 1024 512 1024

Results from

gi(A)
d Iny./de, —0.4248 —0.4247 0.3019 0.3019
¢ 0.9495 0.9497 1.013 1.012
Results after

iteration (HNC

equation)
G, /104 —0.7923 —0.7912
G, /10 0.8652 0.8641
H, /102 —0.5104 —0.5103
H,_/10% 0.4562 0.4561
d Iny./decs —0.4207 —0.4205
¢ 0.9530 0.9530

& Hy=Tyj/4m.

apparent that the former is significantly superior by
this criterion, and Table II confirms that in fact it
leaves nothing to be desired. For this reason we also
present in Table IIT the detailed results of the HNC
equation; they serve as an accurate representation
of the primitive model for the chosen set of parameters.
We cannot be sure that the superiority of the HNC
equation will persist as these methods are extended
to a higher concentration range, different charge types,
different short-range contributions to the potential, and
to mixtures. But we can be sure that we can at last
compute quite accurate values for the thermodynamic
functions for the primitive model up to the molar con-
centration range.

V. RESULTS AND DISCUSSION

At this stage we should again recall the approxima-
tions that were listed at the end of Sec. III. They are
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Iny, | 0uFa.=a,.c4-64

(A HNC, , HNC

-0-3 1 { 1
0 o] 0-2 04 06

038 A 10

Fi6. 3. Inyy functions obtained by alternative integration of the
correlation functions; curves marked ¢ were obtained by the
compressibility equation and the curves marked p were obtained
by the pressure equation.

all difficult to assess by analytical methods but the
numerical tests that we have made all tend to show
that these approximations, separately and collectively,
are not important in the computations we have com-
pleted. The most impressive evidence for this is the
accurate agreement of the Iny, functions calculated
from the HNC equation via the pressure equation and

Inyp | ------ 0.43-64,0..25-64, /
Q+-=4-6A. ]
0-0

044=0-— =04~ =4-6A

-0-1

03¢ o2 04 06 08 / 1o
Alnri T T T 72
[P ~
o2 -._______.—:__/{ §:
o = 5
0 02 o 06 08 5 10

F1c. 4. Iny, functions from the HNC equation compared with
several other approximations for two sets of ionic parameters.
Except for DHLL+B,, all of these results have been obtained by
applying the compressibility equation. The ordinate of the lower
graph has a scale twice that of the upper one, and the curves have
been calculated as follows:

land2  HNC-w(A),
3and4 PY-HNC,

5 £(A)-HNC,
6 HNC-g(A).
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Tasre V. Comparison of present calculations with those of Carley.

¢ by HNC ¢ by PY
T a [ m/molar Carley Present work Carley Present work
0.4 11.5 1.61 0‘. 261 0.976 0.974 0.965 0.972
0.6 7.66 1.07 0.806 1.12 1.14 1.13 1.12

the compressibility equation as cited in Sec. IV. Still
we have not yet carried out this test for many systems
and it may be suspected that the accurate agreement
results from a fortuitous cancellation of errors. For this
reason we have made an independent check by repeat-
ing one HNC calculation with the same 7 as used earlier
but with N =1024 rather than 512. This was done on
another IBM 7044 computer that has a much larger
core memory.!® The comparison summarized in Table
IV shows that the independence of N for these
cases is systematic and so cannot reflect a fortuitous
cancellation.

In Fig. 4 we compare Iny, as calculated by the HNC
equation with several other approximations, all for
two sets of a;; parameters. All of these have been
obtained by the compressibility equation. It is striking
that the g(A) approximation, which is defined in Eq.
(2.16) and which serves as the trial function in all of
our iterative procedures, gives a result which is so close
to the HNC result so that for many purposes there is
no point in solving the integral equation. This point
is emphasized by Fig. 5 in which we make the same
comparison for the osmotic coefficients. All of these
have been obtained by the pressure equation and this
should be borne in mind if one is tempted to interpret
the differences in order in the two graphs. The ap-
proximations g(A) and w(A) are more sensitive than
the PY equation to the choice of the compressibility
equation or pressure equation method of integrating
the distribution functions. But the dominant feature
is the accuracy of the g(A) approximation which must
be interpreted as resulting from a widespread cancella-
tion of higher terms. This is reminiscent of the cancella-
tion found when the PY equation is applied to fluids
composed of hard spheres without charges. Another
approximation is Eq. (2.14), the results of which are
labelled (14k)e? in Figs. 4 and 5. This equates the
potential of average force to the sum of the short-range
potential (#*) and the Debye screened potential (kTg),
but overestimates the corrections to the Debye-Hiickel
limiting law, while the w(A) approximation which
retains in addition the next term in the potential of
average force underestimates the corrections to the
limiting law. Thus we find that the Iny, and ¢ functions
for the approximations (1+4-%)e? and w(A) lie on either
side of the corresponding functions for the HNC ap-

18 We thank Dr. H. Freitag for arranging the use of the com-
puter at the IBM Laboratory, Yorktown Heights, New York.

proximation which we have shown to be the most
accurate of the five approximations studied by us.

The effect of changing the a; , and a¢_ _ parameters
to be different from the ¢, _ parameter is shown in
Fig. 6. Obviously many more comparisons of this
kind could be made; we only demonstrate here that the
effect of this change is sizeable but does not dominate
the picture.

It is of interest to compare these results with those
of Carley who employed the HNC and PY equations
(without prior summation of the chains) which have
been derived for more general intermolecular potentials.
He also used different numerical procedures from ours
in applying them to electrolyte solutions. These equa-
tions are different from their analogs, derived by
Allnatt for the particular case of ionic systems, but the
two HNC approximations are equivalent and should
give identical results! Unfortunately the range of
overlap of his calculations with the region of most
interest here is not large. However, we have been able
to compare two systems as shown in Table V where the
parameters are those derived by Carley. The agreement
between the HNC results is all that one can expect for
these systems (for which all a;;=4.60 &) since we had
to interpolate or slightly extrapolate his results. The
results for the two PY approximations indicate that,
though they are not theoretically equivalent, the
difference between them is small.

Considerable work is required before a systematic
comparison of the primitive model results with experi-
ment will be in hand; the corrections to the McMillan—
Mayer standard states from the conventional standard
states® have to be worked out for each system and the
calculations here have to be repeated for many sets of
ion size parameters. However, a preliminary com-
parison shown in Fig. 7 indicates that these results
may be quite interesting. The DHLL4+B, curve is
known to fall quite close to the extended form of the
Debye-Hiickel limiting law which many authors have
chosen to represent the primitive model. Proceeding
on this assumption Stokes and Robinson interpreted
the difference between this and the experimental curve
for LiBr as due to ‘“hydration,” worked out a theory
for this, and derived a hydration number. We see how-
ever that the true primitive model function for the
same ion size parameter falls ¢bove the experimental
curve, so their result is without any basis. It remains
to be seen whether the primitive model curve which
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best fits these LiBr data will curve upward more or less
sharply than the data.

APPENDIX A. GENERALIZATION OF THE
COMPRESSIBILITY EQUATION FOR
IONIC SOLUTIONS

This calculation follows the method used by Kirk-
wood and Buff” for a similar problem but is developed
with the restraints of the solution of a single electrolyte

é T T I
----- [P 3'65‘»0—-= 5'6&'
0,-=4-62

A44=0-~ =d+— = 4‘65

1-08

1-04

100

0-96 DHLL+B, _|
1 -"1_-—— i 1
) 0-2 04 06 08 4 10
Ad T T T T
0-02|
ol HNC =w(A) _
0-0 HNC-PY
1 {
o 02 0-4 0-6 08 /1 0

FiG. 5. Comparison of the osmotic coefficients obtained from
various approximations. The parameters are the same as in Fig. 4
but here the pressure equation has been used in calculating ¢ from
the correlation functions. The ordinate of the lower graph has a
scale twice that of the upper one, and the curves are identical for
both sets of ionic parameters.

in mind. In this Appendix the solvent is denoted by
subscript 1, the solute by subscript 2, and the ionic
components are variously 4, 7, or &.

The composition fluctuations in the grand ensemble
give the relations

k T(GN,'/G;L,') T 11 0% =kT(aNj/3y.i) T .p1,p5
=(N:N;)—(N:){N;), (A1)

where the subscript u means all ionic u’s except the
one indicated in the differentiation. The definition of
gi; in the grand ensemble and the assumption of spheri-

1 J, G. Kirkwood and F. P. Buff, J. Chem. Phys. 19, 774 (1951).
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T T T I
.04 HNC

-02

1 1 |
] 02 0-4 06 o8 | I

F1c. 6. Differences in Invy, and ¢ for two sets of ionic parameters
in the HNC equation; the effects of a . 4 #a_ _#a, . Here Ax=
x(ay+=3.6 &, a__=56 &, a,-=4.6 &) —z(all ay=45 A).

cal symmetry for these correlation functions gives

C,'Cj/ (g.'j—l)dsfidsfj=6i6jv4’7l' /"” (g,’j—l)fijzdrij
14 0

=(NN;)— (N:){N;)—Vedis. (A2)
Defining G;; by Eq. (4.5) one obtains from the above
equations the important relation

M= (aci/al“i) T \p1.0k
= (8¢i/ Ots) T oy e

= (kT)_I(CiCjGij‘l"Cjaij) . (A3)
This perfectly general equation may also be obtained
from the McMillan-Mayer theory.

Assuming that there are ¢ ionic species in solution,
there are o components each for the vectors y and ¢
representing the chemical potentials and concentra-
tions, respectively, of the ions, and ¢? elements M,; in
the square matrix M which is symmetric. Hence for
the McMillan-Mayer system (7" and w; constant) we
have the set of equations

dc=Mdy. (A4)

To transform from the variables (T, us, ux) to (T, g1, ck)

DHLL+ B,
1
08

-0 ] 1
3O 02

Fi16. 7. Fex/2RTI from the HNC and (DHLL-+-B;) approxi-
mations compared with the experimental values for LiBr in H:0
at 25°C. Two sets of HNC curves are shown: —— all a;;=4.6 &;
———a,4=36 A, ;=46 A, g__=56 A. The experimental
values have been corrected from the conventional standard states
to the McMillian-Mayer standard states.
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we merely invert Eq. (A4) to obtain the set
dy=M"dc,
(M) ;;=cofactor of M ;;/detM, (AS5)

which also applies to the ions in the same McMillan-
Mayer system. In particular, for the solution of a single
electrolyte, if

-M+ + My_
M= LM__ + M__ .
then _
M__ —M,_
M—l = __M_ + M+ +
detM (A6)
where
detM =[C+C_/(kT) 2][1+C+G+ ++C_G_.. -
Feio (G 4G —G B ] (A7)

From Eqgs. (A3), (AS), and (A6) and the following
definitions

due=vydu+v_dp_

C-=v_C;

T and y; constant
C+=V40s, v=viv_
one obtains

kT (3u2/ 3c2) 7

=y [vorteic (Gy ++G- _—2G J)]/detM. (A8)
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Equation (A8) reduces to Eq. (19) in Kirkwood and
Buff’s paper,” in the limit

Gi +=G_ =G4 =Gp,
with the use of the relation
Czdp,z —dP= 0,

which applies at constant T and ;. On removing the
ideal contribution from Eq. (A8), the expression given
in Eq. (44) for the nonideal term (d lny./de)r,, is
obtained. Equation (4.4) gives the Debye-Hiickel
limiting law asymptotically in the limit of infinite
dilution, when the leading term, (1-4k;) exp(gi;), in
the correlation function gi;(r) is substituted in the
expression for Gy;, and the exponential expanded as
far as the first three terms.
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Spin Degeneracy in the AMO Method. Excited States of the Benzene Molecule*
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Quantum Chemistry Group for Research in Atomic, Molecular, and Solid State Theory, Uppsala University, Uppsala, Sweden
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The spin-degeneracy problem in the alternant molecular-orbital (AMO) method, as applied to excited
states of the benzene molecule, is investigated. The results obtained using the full nine-dimensional triplet
spin space and the five-dimensional quintet space show in the one-parameter method an energy improve-
ment over the ones obtained by a conventional AMO treatment of 0.659 eV for the 3B, state and 0.975 eV
for the 54y, state. When two mixing parameters are used the corresponding improvements are much smaller,
0.029 eV and 0.032 eV, respectively. Results are also presented for some additional states, not occurring in

the ordinary AMO method.
INTRODUCTION

The alternant molecular orbital (AMO) method was
proposed by Léwdin! in order to remove some of the
correlation error attached to the conventional MO-

* The research reported in this document has been sponsored in
part by the Air Force Office of Scientific Research (OSR),
through the European Office of Aerospace Research (OAR)
United States Air Force, under Contract AF 61(052)-874.

1P.-0. Loéwdin, Symp. Mol. Phys., Nikko, Japan, 1953, 13
(1954).

LCAO scheme. A detailed description of the method can
be found in a series of papers by Léwdin, Pauncz, and
de Heer? and in a newly published book by Pauncz,?
so that only a brief outline is given below.

2 (a) P.-O0. Lowdin, Phys. Rev. 97, 1509 (1955); (b) R.
Pauncz, J. de Heer, and P.-O. Lowdin, J. Chem. Phys. 36, 2247,
2257 (1962); (c) J. de Heer, J. Phys. Chem. 66, 2288 (1962);
(d) R. Pauncz, J. Chem. Phys. 37, 2739 (1963); (e) J. de Heer
and R. Pauncz, ¢b:d. 39, 2314 (1963).

3R. Pauncz, Alternant Molecular Orbital Method (W. B-
Saunders Co., Philadelphia, Pa., 1967).
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