REACTIONS INVOLVING RADICAL INTERMEDIATES

rates of Steps (16) and (17) as 8/K; for the pyrolyses
of acetaldehyde and dimethyl ether at several tem-
peratures. If this ratio is sufficiently large, i.e., > 10,
the reaction order for the disappearance of reactant
will be determined by Step (17). For smaller values of
8/K,, the reaction will be a transition region [or deter-
mined by Step (16) if the ratio iz small enough].

Since B (steady state) is proportional to AY?, the
rate equation would have the form

rate= k10A+ k“'ASIZ’ ( 24)

where kyy’ = kyy(kie/ k1) V2. It can be concluded, from the
B/K; values in Table IT, that a shift in order from three-
halves toward one couvld be expected for the pyrolysis of
acetaldehyde and dimethyl ether in the temperature
region of about 1100° and 900°K, respectively, although
the steady-state assumption may be valid at these
conditions. The application of Eq. (24) to rate data in
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the transition region from which ks could be calcu-
lated explicitly would be straightforward.

The Rice-Herzfeld mechanism has been presented in
its simplest form; side reactions and shifts in mechanism
may also complicate the interpretation of data. In
addition, the problems of collision activation for the
unimolecular steps in the mechanism for the pyrolysis
of smaller molecules and collision deactivation for
termination (third body) must be considered, as dis-
cussed in the previous section. The effects discussed in
this presentation should be considered in addition to
these other complications.

ACKNOWLEDGMENT

This research has been sponsored by the Air Force
Office of Scientific Research, Office of Aerospace
Research, United States Air Force, under AFOSR
Grant No. AF-AFOSR-1291-67.

VOLUME 50, NUMBER 9 1 MAY 1969
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The computations described earlier [ J. Chem. Phys. 48, 2742 (1968) ] have been carried out for a variety
of primitive-model parameters representative of aqueous 1-1 electrolyte solutions at 25°C. A number of
tests, some new, have been applied to assess the accuracy of the results. One test involves a square-mound
model, for which some results are also given. The hypernetted-chain equation is found to be quite satisfac-
tory for these models up to 1M electrolyte concentration.

I. INTRODUCTION

Recently an account was given! of integral-equation
computations of the correlation functions and excess
free-energy functions for the primitive model for
electrolyte solutions. This comprises charged hard
spheres in a dielectric continuum. The results indicated
that the hypernetted-chain (HNC) equation is quite
accurate foranodel parameters corresponding to aqueous
1-1 electrolytes up to 1M in concentration. A second
important conclusion was that previous treatments
have grossly underestimated the excluded volume
contribution to the free energy, so much so that the
sign of the change in the model required to get agree-
ment with data for real systems is reversed.

* Grateful acknowledgement is made of the support of this
work by the Office of Saline Water.

1], C. Rasaiah and H. L. Friedman, J. Chem. Phys. 48, 2742
(1968). A few misprints which occurred in Ref. 1 should be cor-
rected as follows. Equations (1.7) and (4.8) should have, in each
instance, a minus sign before them. In Eq. (2.16)g;; should be
replaced by g¢:;. The equation referred to in the Appendix as
defining G;; is Eq. (4.9) and not Eq. (4.5).

This paper is concerned with extending these results
to a variety of sets of primitive-model parameters
representative of aqueous 1-1 electrolytes near 25°. One
objective is to make the results available for comparison
with experiment as a basis for making refinements in
the model. The results may also be useful for estimating
the behavior of refined models by perturbation methods.

Another objective is to investigate the application
of various quality tests to these results. This aspect is
given great attention here for several reasons. First,
there are at present no computations of the Monte
Carlo or molecular-dynamics sort which are suitable
for comparison, so some other control of the errors
inherent in the integral-equation computations is
required. Furthermore, it is very clear that much more
elaborate models than the primitive model must be
investigated in order to elucidate some of the central
problems of the electrolyte solution field: the effect
of ion solvation on activity coefficients, for example.
While it is anticipated that MC and MD computations
will become available for some primitive-model sys-
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TastLE 1. Dielectric properties of water.®

T(°K) € dlne/d InT
293.16 80.176 —1.3459
298.16 78.358 —-1.3679
303.16 76.581 —1.3900

8 B. B. Owen, R. C. Miller, C. E. Nilner, and H. L. Cogan, J. Phys.
Chem, 65, 2065 (1961).

tems, there will be a continuing need to apply less
expensive methods, such as the integral-equation
methods, to the more elaborate models.

As discussed in Sec. III, there is an infinite number
of self-consistency tests of the integral kind. Of these
anumber have been selected which only require integral-
equation computations that are of immediate interest
for some other purpose as well. This consideration has
influenced the selection of computations summarized
in Sec. IT; these include somewhat more than primitive-
mode] results,

II. COMPUTED THERMODYNAMIC FUNCTIONS

The primitive model is defined by the following
equation for the direct potential (potential of average
force at infinite dilution) acting between ions 7 and § at
separation 7:

uij(r) = eie;/er+u*ii(r), (2.1)
u*;(r)= o, if r<ai
=0, if ay<r. (2.2)

Here ¢ is the dielectric constant of the pure solvent,
e; is the ionic charge, and a;;=r,;47; is the sum of the
radii of ions 4 and 4. It is also assumed that the potential
of interaction of an assembly of ions at specified loca-
tions in the solvent is a sum of pair potentials.

The computations are carried out by the method
described earlier and lead to thermodynamic functions
for systems in which the independent variables are the
temperature 7, the chemical potential of the solvent
4w, and the volume concentration of the electrolyte c..
We refer to this as the McMillan-Mayer set of inde-
pendent variables.? For comparison with experimental
data one must have the transformation relating this
set to the usual set: total pressure, temperature, and
molal concentration of electrolyte.® All of the thermo-
dynamic functions in this paper are given in the former
system.

( ’Wi G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276
1945).

*H. L. Friedman, Ionic Solution Theory (Interscience Pub-
lishers, Inc., New York, 1962).

AND H. L. FRIEDMAN

In addition to the osmotic coefficient! ¢ and the mean
ionic activity coefficient v, we report computed values
of the excess energy per unit volume E** which we
obtain from the computed correlation functions by
means of the equation®?®

a a @ ..
E°"=} PP / ) gii(r) 4mrdr,
23 = o 0B

where 8=1/kT, ¢; is the particle number density of
solute species 7, o is the number of solute species, and
g is the pair-correlation function. In computations
involving the primitive model we assume that #;*
is temperature independent and that the only contribu-
tion to the temperature dependence of #.; comes from
the temperature dependence of the dielectric constant.

In these computations we have used the dielectric
properties of water given in Table I. The thermody-
namic functions obtained for the primitive model are
given in Tables IT and III and Figs. 1-4. The functions
dInyy/de, and Iny, are obtained from the compressi-
bility equation and the function ¢ from the virial
equation, except as otherwise noted. Some computations
were also made, by the same computer program, with
the ion-charge parameters set to zero for comparison
with other results for uncharged hard-sphere systems.
These results are given in Table IV.

A few computations have also been made with a
charged square-mound model, in which the direct
potentials are given by Eq. (2.1) together with

(2.3)

wii*(r)= o, U r<ay
=d;, if ey<r<a; 42w
=O, if aij+2w<r. (24)

While these results are of rather general interest, they
are included in this report mainly because of their use
in various tests of the accuracy of the computed correla-
tion functions. They are given in Table V.®

III. SELF-CONSISTENCY TESTS

In this section we shall mostly discuss equations for
a one-component gas in order to keep the notation as
simple as possible. The generalization to many-com-
ponent solutions in the McMillan-Mayer system is
straightforward, so the appropriate generalized forms
are used only in the actual self-consistency tests re-
ported here.

¢In the McMillan-Mayer system ¢ = Posn/ckT, where Poum
is the osmotic pressure, so it corresponds to the compressibility
factor PV/NET often used in describing the equation of state
of a gas. Thus ¢—1 is an excess function.?

§ The appearance of 3(8x)/d8 in place of « in the integrand
is a consequence of the temperature dependence of #, which in
turn arises from the fact that it is an average over solvent co-
ordinates. This problem has been discussed in a general way by
G. S. Rushbrooke, Trans. Faraday Soc. 36, 1055 (1940).

¢ Another aspect of this calculation is described by J. C. Rasaiah
and H. L. Friedman, J. Phys. Chem. 72, 3352 (1968).
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L
Fic. 1. Energy test of HNC equation i
for several models. The test compares o
the left and right sides of Eq. (3.6) which
represent alternative ways of calculating I
the same thermodynamic function from |g-30[
the correlation functions. The ordinate
has been increased by a factor of 1072 -
for Curve A and by 10°1 for Curves B N
and C. I is the jonic strength (moles of
electrolyte per liter of solution). -
10738

3967

ENERGY TEST
HNC

O left side

© rightside

r(R) r(A)
095 |81
1,20 1,20
1.94 194
230 2.30

The familiar self-consistency test is the comparison
of P[g(r)7},, the pressure from the correlation function
by the virial equation, with P[g(r)]., the pressure
calculated from the same correlation function by the
compressibility equation. In the previous report! the
generalization of this test for electrolyte solutions was
described and applied to some HNC results with quite

1039

F16, 2. Energy test for the PY equa- -
tion and the g(A) approximation for the
model in which 7,=7_=2.3 A. Ordinate
decreased by a factor of 10°%, and abscissa
moved to the left by 0.1 for the curve
marked PY.

l o-’o' o

10-4.0 L

satisfactory results. Additional results of this kind are
reported in Table VI for a wide range of model param-
eters. Here ¢, and ¢, are the osmotic coefficients® calcu-
lated, respectively, by the virial and compressibility
equations. The consistency exhibited in Table VI
ought not to be gauged in terms of the absolute magni-
tude of ¢,—,, for it is hard to see what this means, nor

ENERGY TEST
v, *r. = 2304

e O left side
® right side

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



3968 J. C. RASAIAH AND H. L. FRIEDMAN

TasrLe IT. HNC results for primitive model with ion radii as shown and other parameters corresponding to
aqueous solutions of 1-1 electrolytes at 20°, 25°, and 38°C.

¢g (molar) 3 Iny./dc, ¢ Eex/cpb 8 Iny,/dc, ¢ Eex/cb
re=2.34=r_ r+=1.9358=r_

0.002 200 —11.079 0.98459 19.88 200 —11.548 0.98410 20.16

250 —11.184 0.98444 21.70 25 —11.653 0.98396 22.01

300 —11.291 0.98429 23.60 300 —11.764 0.98390 23.95

0.02 —2.3790 0.96307 55.88 —2.7395 0.95919 57.85

—2.4023 0.96272 60.99 —2.7647 0.95882 63.15

—2.4269 0.96235 66.33 —2.7911 0.95842 68.70

0.05 —1.0309 0.95462 80.65 —1.3446 0.94609 84.45

—1.0428 0.95415 88.03 —1.3573 0.94558 92.16

—1,0552 0.95366 95.71 —1.3709 0.94505 100.24

0.1 —0.41394  0.95351 104.11 —0.69787  0.93807 109.98

—0.42072 0.95295 113.57 —0.70526 0.93747 120.00

—0.42776  0.95237 123.46 —0.71308  0.93683 130.48

0.2 —0.02218  0.96470  131.57 —0.28621  0.93645 140.25

—0.02595  0.96406  143.50 —0.29038  0.93575  152.99

—0.02995  0.96339  155.95 —0.29476  0.93500  166.30

0.4 +0.22934¢  1.0036 162.88 —0.03036  0.95012 175.08

0.22722 1.0029 177.62 ~0.03271  0.94932 190.94

0.22496  1.0022 192,98 —0.03510  0.94847  207.49

0.7 0.38023 1.0788 190.81 0.1053¢  0.98460  206.31

0.37886  1.0780 208.04 0.10388  0.98373  224.95

0.37735 1.0772 226.02 0.10235  0.98282  244.39

0.9 0.44438  1.1365 204.08 0.15386  1.0122 221.17

0.44315 1.1356 222.59 0.15261 1.0112 241.20

0.44198 1.1348 241.70 0.15137 1.0103 262.02

1.0 0.47196 1.1674 209.84 0.17275 1.0269 227.61

0.47095 1.1666 228.71 0.17162 1.0260 248.15

0.46983 1.1657 248.40 0.17050 1.0250 269.54
r,=0.954,r_=1.814» r.=1.2058=r_

0.002 —12.241 0.98341 20.74 —12.454 0.98316 21.00

—12.353 0.98325 22.65 —12.570 0.98300 22.94

—12.472 0.98309 24.65 —12.693 0.98284 24.96

0.02 —3.2299 0.95383 61.94 —3.3923 0.95202 63.76

—3.2587 0.95341 67.64 —3.4227 0.95157 69.65

—3.289%4 0.95296 73.62 —3.4564 0.95109 75.86

0.05 —1.7455 0.93478 92.41 —1.8771 0.93099 96.01

—1.7613 0.93417 100.93 —1.8933 0.93037 104.87
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TaBLE II (Continued)

¢2 (molar) 3 Iny./dce ¢ Eex /b a Iny./dce ¢ Eex/cb
0.05 —1.7773 0.93355 109.83 ~—1.9103 0.92972 114.14
0.1 —1.0381 0.91857 122.48 —1.1461 0.91219  128.09
—1.0470 0.91785 133.711 —1.1556 0.91142 139.88
—1.0564 0.91709  145.46 —1.1656 0.91061 152.22
0.2 —0.57720  0.90294  158.97 —0.66539  0.89239  167.24
—0.58223  0.90208  173.49 —~0.67076  0.89146  182.58
—0.58753  0.90117  188.69 —~0.67639  0.89049  198.62
0.4 —0.28680 0.89208 201.71 —0.36107 0.87434 213.36
—0.28958  0.89109  220.07 ~0.36402  0.87327  232.85
—0.29251 0. 89005 239.26 -0.36716 0.87212 253.36
0.7 —0.13756 0.89158 240.71 —0.20450 0.86422 255.47
—0,13929  0.89049  262.54 ~0.20630 0.86304  278.71
—0.14110  0.88934  285.36 ~0.20818 0.86179  303.02
0.9 —0.08799  0.89576  259.37 ~0.15293  0.86209  275.71
—0.08938  0.89463  282.86 —0.15437  0.86087  300.75
—0.09070 0.89328 307.54 —0.15588 0.85958 326.92
1.0 —0.06975  0.89863  267.41 —0.13410  0.86182  284.440
—0.07065  0.89731 291.77 —0.13541  0.86057  310.276
—0.07210 0.89610 317.06 —0.13679 0.85926 337.24

& Pauling radii for NaCl.

in terms of the relative inconsistency (¢,—¢.)/(¢,—1),
for ¢—1 results from the balance of a large negative
contribution (Coulomb forces) and a large positive
contribution (excluded volume) which tend to mutually
cancel over much of the given composition range. It is
proposed that the appropriate gauge of the consistency
by this test is (¢.—¢.)/(¢.2—1), where ¢,0 is the

SIZE TEST
O left side HNC
Sright side er= 1,944
022 r
08 |
* Q)
L Ny
! o o
[ O\_e_e
1 L 1 L1 1 o [} 2
0.2 0.6 «/T 1.0

Fic. 3. Test of the HNC equation by Eq. (3.17).

b This ratio has the units calories per mole,

osmotic coefficient of the corresponding uncharged
system. Approximate values of 10¢(¢,0—1) at c;=1M
are given for each system in Table VI.

Another self-consistency test which has been em-
ployed” exploits two functional relations of the energy

RADIUS RATIO TEST, HNC

ra+r.= 2,414
O left side o
S right side OeO
0.006 I o /
(=]

0.003

‘V,i 1.0

F1G. 4. Test of HNC equation by Eq. (3.19) at x=1.21.

7K. Hiroike, J. Phys. Soc. Japan 12, 326 (1957). See also J. S.
Rowlinson, Mol. Phys. 9, 217 (1965).
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TasLe ITI. HNC results for primitive model with jon radii as shown and other parameters corresponding
to aqueous solutions of 1-1 electrolytes at 25°.

¢ (molar) 8 Iy, /3¢ ¢ Ees/cp 9 Iny./dc, é Eex/fep
r+=1.04,7_=3.64 r+=1.344,r_.=3.034
0.002 —11.094 0.98455 21.74 —11.598 0.98400 22.04
0.02 —2.2608 0.96404 61.34 —2,6922 0.95949 63.36
0.0s —0.87839 0.95790 88.82 —1,2748 0.94782 92.65
0.1 —0.22874 0.96140 115.02 —0.60947 0.94169 120.99
0.2 +0.10886 0.98345 146.21 —0.18088 0.94591 154.58
0.4 0.46887 1.0508 182.19 +0.09787 0.97330 193.81
0.7 0.70069 1.1837 215.61 - 0.25188 1.0330 230.04
0.9 0.81602 1.2936 231.60 0.32367 1.0820 247.12
1.0 0.88474 1.3557 238.28 0.35008 1.1080 254,93
re=r_=1.454 r.=0.634,7.=2.274
0.002 —12.246 0.98334 22.55 —12,229 0.98336 22.56
0.02 —3.1993 0.95406 66.92 —3.1804 0.95424 67.01
0.05 —1.7167 0.93549 99.49 —1.6919 0.93606 99.70
0.1 —1.0130 0.91995 131.46 —0.98429 0.92121 131.90
0.2 —0.55649 0.90543 170.05 —0.52247 0.90852 170.80
0.4 -0.27120 0.89603 215.15 —0.23094 0.90339 216.50
0.7 —0.12526 0.89725 256.02 -0.07834 0.91192 258.42
0.9 —0.07704 0.90227 275.58 —0.02552 0.92262 278.58
1.0 ~0.05939 0.90548 284.04 —0,01329 0.92863 287.49
r,=0.524,7_=1.894

0.002 —12.560 0.98301 22,94
0.02 ~3.4140 0.95165 69.70
0.05 —1.8814 0.93063 104.97
0.1 —1.1419 0.91204 140.62
0.2 —0.65449 0.89292 182.95
0.4 —0.34501 0.87668 233.58
0.7 —0,18457 0.86983 280.08
0.9 —0.13104 0.87003 302.64
1.0 —0.11142 0.87125 312.22

& This ratio has the units calories per mole,

to the pair correlation function. One is functional is

ELg(n J=olpF=(g(r)1}/o6,  (3.1) Elg() J=he [ erg(r)ar, (33)

where
e(r)=3[Bu(r)/36]. (3.4)

For any g(r) which is exact for some physical model, one

and where ¢ is the particle number density in the system Decessarily has
of interest and in the integrand g(r) =g(7, ¢’). The other E[g(r)1.=E[g(r) ] (3.5)

Fex[g(7) ],Ec/: {P[g(r)),—c'kT} 2 (3.2)
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TasLe IV. HNC and PY results for uncharged hard spheres.

Dif?e?;nce
. by bo PY equation
) HNC PY PY analytical
Molar computation computation analytic soln. computation
ry=1824,r_=284,
0.1 1.0267 1.0267 1.0267 0.0000
0.3 1.0830 1.0829 1.0831 0.0002
0.5 1.1434 1.1429 1.1434 0.0005
0.8 1.2432 1.2412 1.2419 0.0007
1.0 1.3162 1.3122 1.3135 0.0013
r.=r-=2.3%

0.1 1.0249 1.0249 1.0249 0.0000
0.3 1.0771 1.0770 1.0772 0.0002
0.5 1.1327 1.1323 1.1327 0.0004
0.8 1.2233 1.2219 1.2226 0.0007
1.0 1.2892 1.2862 1.2873 0.0011

which is the basis of a self-consistency test. For a gas,
one is accustomed to assuming that %(r) is independent
of temperature so #(r) =e(r), but in the generalization
of these equations for electrolyte solutions #(r) becomes
the potential of the average force between two ions in
the pure solvent and can even differ in sign from e(r).

The generalization of this test to electrolyte solutions
has been employed in the form

1 a(E“/Cz)) 1 (a¢v)
N S Sl d74 = — .6
2RT? ( dcy Taw 6 \0T/e (36)

where Ee*, the appropriate generalization of E[g(r)],,
is given by Eq. (2.3), while ¢, is the osmotic coefficient

derived from the virial equation. For testing the primi-
tive model E°* has been evaluated with the assumption
about the temperature dependence of u;; described
following Eq. (2.3). The test was made for several
systems by numerical differentiation of the computer
results in Sec. IT. As shown in Fig. 1 the agreement is
completely satisfactory for all of the HNC results
which have been examined while (Fig. 2) it is much
less satisfactory for some calculations by the PY equa-
tion! and the g(A) approximation.!

Now returning to the consideration of Egs. (3.1)-
(3.4) for one-component systems, we remark that while
the hypersurface g(r, ¢, T) is a functional of e(r) as

TasLE V. HNC results for square-well model with mound height as shown and other parameters corresponding
to aqueous NaCl at 25° (r,=0.95 X, r_=1.814, w=1384,2d, .=d_ _=0).

cz 9 Iny/ac, b0 Eex/¢b 9 Iny./dce b Eex [cgb
dy -=0.25kT d, -=—0.25T

0.002 —12.033 0.98360 22.88 —12.740 0.98276 22.31
0.02 ~3.0045 0.95631 69.41 —~3.5756 0.94971 63.95
0.0s —1.5518 0.94029  105.27 —2.0182 0.92653 93.01
0.1 ~0.87031  0.92832  142.26 —~1.2584 0.90504  117.74
0.2 ~0.43457  0.91981 190.05 —0.75588  0.88090  146.74
0.4 -0.16313 0.92099 251.60 —0.43402 0.85614 170.70
0.7 ~0.02546 0.93666 315.06 —0.26665 0.83761 184.19
0.9 +0.02032 0.95107 348.80 —~0.21067 0.83062 186.68
1.0 0.03703 0.95880 364.32 ~0.19029 0.82791 186.94

* w is the radius of a water molecule. b This ratio has the units calories per mole.
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TasLE VI. Virial-equation-compressibility-equation self-consistency: 104(¢»—¢.) for the HNC equation.

rs 2.3 1.0 1.935 0.8 1.205 0.52 1.45 0.63 0.95 0.95
- 2.34 3.6 1935 3.03 1.205 1.89 1.45 2,27 1.81 1.81
M?lar
0.1 -3 -9 - —11 -5 -5 -1 1 -2
0.2 -7 -4 -4 —13 -9 -8 -5 4 —6
0.4 7 22 0 17 10 -—-16 -—11 -5 -6 -1
0.7 14 95 6 26 1 —31 -10 -8 —15
0.9 147 11 62 -7 -37 -8 -7 14
1.0 36 15 9 -11 —36 -7 -10 -15 11
1.00 2900 4900 1600 2600 360 550 640 980 630
1.0 -9 ~46 —1 -9 0 0 0 -1 0

& Square-mound meodel: d; .=0.25 kT, d+ .=d_ _=0,
b 104(¢p,9 1) at cs=1M in this row. Approximate values from the HNC
equation,

well as of #(r), the isothermal surface g(r, ¢) is a func-
tional only of #(r). Thus a given exact g(r, ¢) at T’
should satisfy an infinife set of energy tests in which
u(r) at T’ is fixed, but e(r) is arbitrary. In our elec-
trolyte-solution computations, for example, the g;;(r, ¢)
at 25° depend on ¢, the dielectric constant of the solvent,
but not on de/dT. Thus our computations should satisfy
an infinite set of consistency tests in which we keep
€(25°) fixed but assume hypothetical forms for ¢(7T)
in the neighborhood of 25°. Each such additional test
would, of course, require additional computations of
the correlation functions at temperatures near 25° with
the assumed €(7") in order to enable the evaluation of
the right side of Eq. (3.6). Since the integral equation
computations are expensive and the results for hypo-
thetical (7"} would not have any known use other than
the test, a search has been made for equivalent tests in
which the necessary additional computations would
have some known intrinsic value.

Before describing such tests it seems helpful to point
out that the energy test and the others which follow
derive from a single differential form. For example, by
functional differentiation of Eq. (3.5) with respect to
e(r) we derive (for a one-component system: ¢, b, 1, §
specify labeled molecules)

agij 05 0ga

f«'i"g'i—36 __5_1=/ ATatap _g_b’ (3.7)
ari; ac ouij

(3.8)

The last functional derivative may also be eliminated®?;

the equation then involves two-, three-, and four-body
correlation functions; thus Eq. (3.7) implicitly involves

Vai=1tap (auab/am,) .

8J. K. Percus, in the Equilibrium Theory of Classical Fluids,
H. L. Frisch and J. L. Lebowitz, Eds. (W. A. Benjamin, Inc.,
New York, 1964). Also J. L. Lebowitz and J. K. Percus, J. Math.
Phys. 4, 116 (1963).

9 A somewhat analogous relation has been reported by P.
Schofield, Proc. Phys. Soc. (London) 88, 149 (1966).

°104(p,"—¢p,®) for the PY equation at cs=1M. 10¢[¢,*(HNC)—
" (PY)] =30 at cz=1M for the system r, =r_=2.3 A

higher-order correlation functions and is not directly
useful for testing computations which yield only two-
body correlation functions. However, its existence does
emphasize the possibility of having a point-by-point
test of the self-consistency of computed correlation
functions rather than the integral tests employed in
this section. Such a point-by-point test would require ap-
proximations for the higher-order correlation functions.

Some additional useful consistency conditions of the
integral kind may be derived by assuming that there is
an arbitrary thermodynamic variable » which may be
adjusted independently of T and V, the volume of the
system. For the present purpose it may be conceived
as a variable on which #(r) depends. It can still be a
thermodynamic variable if, for example, one employs
the McMillan-Mayer theory and imagines that x is a
measure of the effect of changes of solvent composition
on the direct potential.

Then we define

u(r)=3u(r) /ox, (3.9)
X[g(r) =—B(3F>/3x). 1, (3.10)

where Fe* is the excess free energy given by Eq. (3.2).
It is easily shown!® that if we define

Xg() h=—38¢ [ w(r)grydr,  (311)
then we have, for the exact g(r),
X[g(r) 1=XTg(n) 1. (3.12)

This provides more consistency tests which are quite
analogous to those discussed above.

As an example of the new tests we now consider a
system in which the direct potential is the sum of hard

1M, L. Friedman, J. Chem. Phys. 34, 73 (1961). The present
notation is somewhat different.
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core plus soft parts:

wu(r) =wup(r) +u, (), (3.13)
e (r)= o, for 7r<x
=0, for z<r. (3.14)

Then Fe*(x) is just what we may compute while in-
vestigating the effect of the hard-core diameter on the
thermodynamic properties; from it we may obtain
X[g(r) ), perhaps by numerical differentiation. In this
example

—Bu.(r) =exp(Bur) (8/0x) exp(—Pux)

= —exp(Burc) 6(r—x), (3.15)
so Eq. (3.11) becomes
X[g(x) Jo= —2rx2c2g(x+), (3.16)

where g(x+) is g(r) evaluated at r infinitesimally
larger than , i.e., just outside the hard core. Thus,
when Fex(x) has been computed over some range of
¥, no additional integral-equation computations are
required to make the test.

This test has been generalized for some electrolyte
solution applications. First we consider the restricted
primitive-model case in which 7,.=7_=2x/2. Then the
required generalization of Eq. (3.12), in a convenient
form for this application, is

c51(9¢,/0%) ,=x2(143/0 Incs)
X[2g (2)+gp () +g ()] (3.17)

The differential operator appears on the right side,
because on the left we have the osmotic coefficient
rather than the total excess free energy. Some tests
according to this equation are shown in Fig. 3.

Now we consider primitive-model computations in
which 7, +47_ is fixed and the variable is

(3.18)

Then the required generalization of Eq. (3.12) in a
convenient form for our purpose is

52_1(64’1’/695) c2,a4 = 7r(1+6/6 ln62)
Xla_ 2% _(a_)~ay g 1(ar )] (3.19)

Some tests according to this equation are shown in
Fig. 4. The relatively poor behavior of this test seems
to be due to the fact that the effect of changing r, —7..
at fixed r1+7_ is small; in fact, the relevant derivative
vanishes at 7. =r_. There is also a particular computa-
tional difficulty in this test associated with the difficulty
of having each a;; fall on one of the 512 mesh points!
at every concentration. This is less troublesome at high
concentration where the agreement is better, contrary
to what one would expect if the failures of the test were
due to the intrinsic approximation in the HNC equation.

We remark that the last two tests are complementary
in a useful way: Eq. (3.17) depends mostly on gy —

x=2(r_—r,).

3973

at contact while Eq. (3.19) depends only on gy .. and
g— — at contact.

For an application of Eq. (3.12) which enables one
to test the correlation function away from contact,
consider the direct potential which is the sum of a
square-mound perturbation and an unperturbed part:

u(r) = use(r) +uo(r), (3.20)
use(r)=0, for r<!
=xkT, for I<r<L
=0, for L<r, (3.21)
in which case we have
X[g(r) Je=—13c fl ’ g(r)dnridy. (3.22)

The resulting self-consistency test for an electrolyte
solution in which %, _ is perturbed by a square-mound
term as in Eq. (3.20) while %, , and #__ are unper-
turbed is

a¢,,) /’ L d
=) =2 r’dr 1
e (ax 2 4 ! rit 3 Inc,

g+ -(r). (3.23)
Applications of this self-consistency test are shown in
Fig. 5. Equally satisfactory results are obtained by this
test for the HNC and PY equations.

Finally it may be remarked that the self-consistency
tests based on Eq. (3.12) are closely related to Zwan-
zig’s perturbation expression for the equation of state!!
and could be derived from that starting point.

IV. OTHER TESTS

A. Numerical Accuracy

We may test for the accuracy of the numerical
methods used, as distinct from the accuracy of any
particular integral equation. When the charges are set
equal to zero the analogs! of the HNC and PY equations
which are studied here become identical to the more
familiar HNC and PY equations derived for more
general intermolecular potentials. For a mixture of
uncharged hard spheres the analytic solution to the PY
equation is known! and may be compared directly
with the solutions obtained numerically. This compari-
son is made in Table IV for the PY and HNC equations;
the numerical results have been obtained by setting
the charges equal to zero in the very computer program
used for ionic systems, but with the same lattice spac-
ings used for a 1:1 electrolyte. The agreement obtained
between the analytic and numerical results is excellent.

An important approximation in the numerical pro-
cedure for solving the integral equations is the trunca-
tion of the integrals.! Essentially, in solving the integral

HR. W. Zwanzig, J. Chem. Phys. 22, 1420 (1954).
127, L. Lebowitz, Phys. Rev. 133, A295 (1964). J. L. Lehowitz
and J. S. Rowlinson, J. Chem. Phys. 41, 133 (1964).
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TasrE VII. HNC results for R;; [Eq. (4.4) ] for some typical systems,

System Molarity
e r i,j 0.1 0.4 0.7 1.0
1.205 1.205 any 1.0038 1.0065 1.0061 1.0047
1.935 1.935 any 1.0057 1.0032 0.9975 0.9911
+ + 1.0077 1.0131 1.0173 1.0124
1.0 3.6 + - 1.0060 1.0038 1.0008 0.9793
- - 1.0036 0.9970 0.9922 0.9924
+ + 1.0063 1.0098 1.0108 1.0117
0.84 3.03 + - 1.0056 1.0050 1.0017 0.9986
- - 1.0042 1.0004 0.9950 0.9917

equations each Fourier integral is truncated

/Omf(r) isin(kr)dr—»/ollf(r) -;ésin(kr)dr 4.1

and then, for the calculation of thermodynamic prop-
erties, the computed correlation function g{r)emp is
continued by adding the asymptotic form g(r) ..y for
large r:

g(’)=g(r)oompy for <L

=g(’) asy) for L<y, (42)

with the approximation that g(r) has the limiting
Debye-Hiickel form

Ing:;i(7) asy= —Beie; exp(—«r) fer. (4.3)

In Table VII some results are given for the ratio
Rij=[gi(L)oomp—11/[gis( L) asy—1].  (4:4)

These ratios are found to be surprisingly close to unity,
but at least there is no evidence here for any important
effect of the truncation on the correlation functions. In
all the computations, xL is nearly constant! at 7.66, so
| gi;{L)—1]| varies from 5X10~% at 01M (L=734)
to 1.5X10~* at 1M (L=234).

The effect of the continuation [Eq. (4.2)] on the
computed thermodynamic properties is so small that
the effect of any remaining uncertainty as to the correct
asymptotic form of g(r) is doubtless negligible. For
example, the contribution of the assumed continuation
to ¢, is — &% exp(—«L) /24mwc which amounts to —5.8X
10%at 0.1M and —1.9X10~* at 1M.

Very recently Stell and Lebowitz!3 have devised a new
equilibrium theory of ionic systems in which it is re-
quired to know the equilibrium properties (#n-body
correlation functions) of the corresponding discharged
system. Then the properties of the ionic system can be
calculated exactly at any concentration, although the
results are expressed as power series in the “Coulomb
length” A=4we?/ekT, where ¢ is the electronic charge.
One of their results which is very useful here is that, for

B G. Stell and J. L. Lebowitz, J. Chem. Phys. 48, 3706 (1968).

sufficiently small X but at any concentration,

Ing:;(7) asy= —Bei’e; exp(—«'r) /er. (4.5)

Here ¢/ is a modified charge and «’ a modified Debye
screening factor; both depend on properties of the
discharged system as well as on the ionic charges. If
the discharged anions are identical to the discharged
cations, then e;//=e; and «'=«.

Using the PY equation for the equation of state of a
mixture of uncharged hard spheres!® one may evaluate
the right side of (4.5) for unsymmetrical models
(r45%r_). The result may be expressed as a ratio like
R;; but with the Stell-Lebowitz expression in the
numerator. For the system r,=10A4; r_=3.6A,
6=1M, one finds R, ,=4.55, R, .=2.35,and R__=
0.30. If any of the variables ¢, r4+7_, or | ri./r_—1 1 is
reduced, then the R;; becomes nearer to unity. The
comparison of these R;; values with those in Table
VII, taken with the indications that the present HNC
computations are rather accurate, leads to the conclu-
sion that the small A result given in Eq. (4.5) is not

MOUND-HEIGHT TEST
=0.95A r.=1:84
06
oleft side
L ©right side
0.3r

0.2 0.6 A Lo

Fi6. 5. Test of HNC and PY equations by Eq. (3.23). The ordi-
nate for the PY equation has been raised by 0.5.

Downloaded 05 Jun 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



INTEGRAL EQUATION COMPUTATIONS FOR 1-1 ELECTROLYTES

3975

Tasre VIII. Zeroth- and second-moment tests of HNC results.

1000 A;
System 1000 A/
re r— dy_ i 0.1 0.4 0.7 1.0 M

1.205 1.205 0 either 4 3 2
4 -60 =15 -30
2.30 2.30 0 either 2 -1 -3 —4
—15 ~60 —80 ~100
0.84 3.03 0 + 2 2 1 0
-~20 -9 ~160 -240
- 1 2 5 -7
2 25 60 100
1.00 3.60 0 + 2 2 2 2
-35 —150 ~260 —360
- 0 -5 —-13 -9
9 70 140 230
0.95 1.81 0.25:kT + 1 -1 -3
6 -35 —65 -90
- 2 1 -2 -4
—4 ~25 —45 —-60

relevant to the system treated here (for which \/4nr=
7.14 A).
B. Zeroth Moment

The quantity -
Go= [ (gs—1)dr

which we call the zeroth moment of the correlation
function appears in the compressibility equation for
the free-energy function. From the grand-ensemble
expression for G;; as a fluctuation quantity and taking
into account the strong resistance of a system of charges
toward fluctuations which result in macroscopic devia-
tions from electroneutrality, one finds that the deviation
from electromeutrality of an ion plus its atmosphere

(4.6)

Aie=ei+ Y cieGij (4.7)
=1

must vanish. Thus for electrolyte solutions there are
some conditions on the zeroth moments of the correla-
tion functions; these may be traced to the long range
of the Coulomb potential. For a solution of a single
electrolyte the resulting form is very simple: both of the
following coefficients must vanish:

Ar=14¢4 (G4 +—G1 ), (4.8)
A =14c (G__—G; ), (4.9)

and therefore, G . =G_ _ for symmetrical electrolytes
(ep=¢_).

The A; values obtained by the HNC equation for
some typical systems are given in Table VIII. These
include the effect of the continuation which contributes
—exp(—«L) (14«xL)~—3.8X 1072 to Ai. The contribu-
tion, which is of the same size as A; itself, is approxi-
mately constant, because the truncation at L is chosen
so that kL is ~7.66 in every case.! Essentially the same
results are obtained from the PY equation, while the
g(A) approximation, which serves as the starting point
for the iterative solution of the integral equations, gives
A; values an order of magnitude larger. For the HNC
equation the magnitude of A; increases somewhat with
the size of the ion cores.

It remains to inquire about the effect that these
errors in g;; make in the thermodynamic properties. The
compressibility equation for a solution of a single
electrolyte! can be written in the form

dlnyy/dInc=(I'-1-T2)/(1+T2), (4.10)
'=1/cGy (4.11)
z=vAA_/ (v Atv_Ay), (4.12)

where v=wv,-+v_, »; is the number of ions of species ¢
produced by one molecule of solute on complete dis-
sociation, and ¢=) ¢;. With one exception in the
earlier work and here the compressibility equation
has been used with the computed value of 2, defined by
Eq. (4.12). Since the exact value of 3 is known to be
zero, one can obtain, for each system at each concen-
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tration, another value of d Iny;/d Inc, from Eq. (4.10)
by setting 2=0. The difference in values of Invy, ob-
tained by the two methods, call it A Iny_, is a measure of
the effect of the nonvanishing A; on the thermodynamic
properties.* It is found that the magnitude of this
difference is less than 0.006 for all of the systems in-
vestigated here, with one exception, and is much smaller
for most of them. The corresponding effect on the
osmotic coefficient is smaller yet.

The exceptional case referred to in the preceding
paragraph is the system for which r,=1.04, r_=
3.6 A, and ;~0.2M. As may be seen from Table VIII,
A,+A_ passes through zero in this range. Therefore
very large values of z are computed in this range. In
this case, the value of d lnyy./dc, reported (Table IIT)
are obtained from Eq. (4.10) with z=0. It is very
interesting that before the theory of the A; had been
given adequate consideration the computations for
this system showed an anomaly near 0.2M in d Invy../dc,
but none in ¢ (the latter from the virial equation). If
this anomaly had not been removed as described here, it
would contribute to the failure of the virial-compressi-
bility self-consistency test for this system.

More generally, it may be remarked that the virial
equation, since it involves integrals like Eq. (4.6) but
with an additional factor r(du;;/dr) in the integrand,
depends less on g() at large » than the compressibility
equation does. Therefore the effect of nonvanishing
A; is a contribution to the virial-ccmpressibility self-
consistency test. Then this effect is not very important
for the present HNC calculations.

C. Second Moment

Stillinger and Lovett’® have recently discovered a
condition on the second moment

Gif= / Lais(r) —1]r%dr (4.13)
of the correlation functions in an ionic solution:
1 K2 o
A/=14> = Y cieGi =0, (4.14)
6 ¢; =1

This also derives from the long range of the Coulomb
potential. For a solution of a single electrolyte we have

M Strictly speaking, this refers to differences in the quantity
Iny.(6) —Iny, (0.1M 3, where ¢, is in the range 0.1-1. We have
set a bound for this range since the method described in Ref. 1
for the integration of dInv./dc, cannot be applied to the =0
limit of Eq. (4.10); as ¢2—0 the A(c) of Ref. 1 does not tend to
zero when the =0 limit of Eq. (4.10) is taken with the present
computations.

% F, H. Stillinger and R. Lovett, J. Chem. Phys. 48, 3858,
3869 (1968). See also F. H., Stillinger, Proc. Natl. Acad. Sci. 60,
1138 (1968).1¢

18 Note added in proof. Actually Stillinger and Lovett showed
that Zcie?Ai’ =0, which for the 1-1 electrolyte case is the same as
Ay'+A'=0. It is interesting that the individual A values are
about as nearly zero as their sum.

J. C. RASATAH AND H. L. FRIEDMAN

[cf. Egs. (4.8), (4.9)]
A =1+3c1(Gy ' =Gy ), (4.15)
A=1432c (G- =G 7). (4.16)

Values of A;’ from the present computations are given
in Table VIIIL. Clearly the second-moment condition
is only rather crudely obeyed by these computed correla-
tion functions, but it is well worth noting that the
continuation [Eq. (4.3) ] contributes

—exp(—«L) (KL+3x2L2+6xL+6) /6

which is as much as —52.2X1073 and is approximately
constant for the same reason that the continuation
contribution to A; is constant. Again there is little
to choose between the HNC and PY equations, but
either is markedly better than the g(A) approximaton
which serves as the starting point for the iterations.

V. DISCUSSION

It is concluded that the generally satisfactory picture
that the familiar virial-compressibility consistency
test gives when applied to these calculations is sup-
ported by all of the other criteria which are considered.
In particular the adequacy of the HNC equation and
its superiority over the PY equation for the present
purpose are consistent with all of the observations.

For the systems considered here the highest concen-
tration, 1M, is less than a fifth of the concentration
corresponding to close packing of the solute ions. It is
therefore a rather low concentration on the scale often
considered in the application of integral equation
methods to nonionic systems, where the main result is
that these methods fail badly at concentrations within
a factor of 2 of the close-packing limit. The implications
of this are not so serious for electrolyte solutions, be-
cause there is much to be learned from studies at lower
concentrations and because at higher concentrations
there is almost certainly going to be a substantial
contribution from nonpairwise-additive terms in the
direct potential for any model which is realistic enough
to be useful in the effort to get a molecular interpreta-
tion of the macroscopic properties of ionic solutions. In
fact, it can only be determined from careful study
whether or not such effects are important even below
1M.

One feature that has been studied and that is not
described here is the appearance of extrema (“oscilla-
tions”) in g;;(r) at some r greater than ;. Such oscilla-
tions are indeed observed in some of the computations
described here. Another report is plauned for these
and some other features which are relevant to compari-
son with experiments on real systems.
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