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An exact statistical mechanical expression for electrostriction in an open system to O(E?) (where E is the
electric field) is obtained by adding the appropriate bridge diagrams to the hypernetted chain (HNC)
approximation for the wall-particle interactions between a dipolar fluid and an electrified wall. The expression
for the relative change in bulk density is found to be independent of the inclination of the electric field (or the
orientation of the “wall-dipole” which creates the field). Comparison with the thermodynamics of
electrostriction leads to a differential equation for the dielectric constant € whose solution is an equation first
proposed by Ramshaw. The significance of the bridge diagram contributions to electrostriction suggests that
they play an important role in determining the structure and properties of dipoles and ions near a charged

wall.

I. INTRODUCTION

A molecular theory of electrostriction and polariza-
tion density which follows from the study of dipolar or-
dering near an electrified wall has been described re-
cently. ! The relative change in density Ap/p{ at an in-
finite distance (z —«) away from the wall is initially of
O(E?) where E is the electric field. The electrostric-
tion effect of O(E?) can be calculated analytically when
the quadratic hypernetted chain (QHNC) approximation
is employed for the wall particle correlation function
hy (2, E, §¢). In the notation of Ref. 1,
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where we recall that € is the dielectric constant of the
fluid in the limit of zero field, pf and @ are the density
and inverse compressibility of the bulk fluid in the ab-
sence of the field, and

(HNC) , (1.1
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in which m; is the dipole moment and 8= (kT)"! where &
is Boltzmann’s constant and 7T is the absolute tempera-
ture. Equation (1.1} is characterized as the hyper-
netted chain (HNC) result for electrostriction because
the term of O(E?®) in the QHNC approximation is also
the HNC approximation for electrostriction to the same
order in the electric field. !

Comparison of Eq. (1.1) with the corresponding
ther modynamic formula? for electrostriction to O(E?),

AP__§_<3€>_E_2 1
L) (1.3)

leads to the following differential equation®:

. 9 (e -1}
Tep] = 3y

whose solution, assuming an integration constant of
1/3, is the simple and well-known Debye relation

’ (1.4)
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It is known that Eq. (1.5) embodies only the leading
term in the exact expression for the dielectric con-
stant. Jepsen® and Rushbrooke! have calculated the
term of O(y?) in the corresponding expression for the
dielectric constant of dipolar hard spheres which is

in agreement with Wertheim’s solution of the mean
spherical approximation, 5 The implication of Eq. (1.5)
as the solution to Eq. (1. 4) is that the HNC approxima-
tion does not even lead to the correct formula for elec-
trostriction to lowest order in the electric field. This in
turn implies that the bridge diagrams that are omitted in
this approximation must play a significant role in deter -
mining electrostriction and dipolar ordering near an
electrified wall.

The contributions of the bridge diagrams to electro-
striction of O(E?) and to lowest order in the density pf
and dipolar moment m, have already been evaluated in
Ref. 1. Here we derive an exact expression for this
term for arbitrary p} and m, and for an arbitrary inclin-
ation of the electric field. This leads to an exact statis-
tical mechanical expression for electrostriction to O(EZ)
which is found to be independent of the field angle. Com-
parison with the thermodynamic theory enables us to de-
rive an exact differential equation for the dielectric con-
stant € in terms of an integral of the projection of the di-
rect correlation function for dipolar molecules in the ab-
sence of the field. The solution to this differential equa-
tion is found to be an expression first derived by Ram-
shaw® for the dielectric constant of dipolar molecules
with cylindrical symmetry which is also the case con-
sidered by us.

Although Eq. (1.3) has long been known on purely
thermodynamic grounds, we should note that its
microscopic derivation immediately follows from the
work of Hfye and Stell. *® It was also subsequently
rederived, in a microscopic analysis, by Carnie and
Stell. "*®

li. ELECTROSTRICTION TO O(£?)—-EXACT RESULTS

As discussedelsewhere,’ the origin of electrostrictionin
our theory is the coupling that exists between the coeffi-
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cients h3;(z) and 43 (z) in the expansion for the wall par-
ticle indirect correlation function

hyt(z, By, 8) =R (2) + 133 (2)D(2, 1) + kg (2)A(2, 1) ++ -+ .
(2.1)
This feedback begins with the QHNC approximation and
leads to a change in density at an infinite distance away
from the wall because the asymptotic value of hﬁ(z) is
a constant (3K,) related to the electric field by®™'0
-1
Ky (3 cos? ez+1)“2=&”—1(9€7i+o(zz), (2.2)
where 0, is the angle between the normal to the wall and
the “wall dipole” which creates the electric field. Only
the leading term in the relationship between K,; and the
Maxwell field E is known exactly and required in our
discussion of electrostriction to O(E?).

It follows from Eqgs. (2.1) and (2. 2) that the bridge
diagram contributions of O(E?) to K, which is an angu-
lar average of the wall particle direct correlation func-
tion defined in Ref. 1, can have only two wall-dipole
hyy bonds. The sum of these contributions |see Eq. (4.4)
of Ref. 1(b)] written out explicitly is

2
B*(Z,l):gsl;légﬁjD(Zﬂ)D(z,M

6

Xm C(3, 4)d‘21 dr3 dﬂa dr4 dﬂ4 y (2. 3)
where =4,
D(2,i)=5,- 3an-U)- 5, , (2. 4)

with 7 the unit normal and i representing particle 3 or
4 and

6c(3,4)
6p(t)

in which ¢(3, 4, 1) and ¢(3, 4) are the three and two-par -
ticle direct correlation fnnctions respectively in the ab-
sence of the field. If 6, is the inclination of the wall-
dipole, Eq. (2.4) can also be written as

c(3,4,1)= . 5)

(2.6)
2.7)

D(2,i)=(3cos 8, ~§,)* S,
=(3C082 62+1)1/2(22' 5() ’

where &, is a unit vector in the direction of the electric

field. From Egs. (2.2), (2.3), and (2.7) one has to
O(E%),
0 70
w2 Ble - 11 E%p}J(p}, y)
B9 — 2any , (2. 8)
with
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(2.9)
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=§T €y° [mfdr34d93dﬂ4s3c(3,4)s4 ey .
(2. 10)
By expanding ¢(3, 4) as

c(3,4)=c(r3) + cP(r3)D(3,4) + cA(ryy)A(3,4) +- - .,
(2.11)
where the terms beyond c®(r;,)A(3, 4) are of shorter

range than 733 and c(3, 4) is finite as v -~ 0 and making
use of the relations

_[é,dﬂ, =0, (2.12)
[a5a0,-% v, (2.13)
fdr:M Zf 7'%4d7’34fd;'34 , (2. 14)
0
f(3;’34;’34 -U)dr3 =0, (2.15)
and
ﬁlng(3,4)2dﬂ3dﬂ4: 3, (2.16)
we have
]
I(pd, ) =53 1o}, ) 2.17)
Pi
where
1
Kl y) =57 [desedRydiaye(3, 41803, 4). (2.18)

Thus, the contribution of O(E?) to K, from the bridge
diagram is given by

B*‘2)=’3(€ -1y o 8l(p}, y)
24wy 1™ 8p]

Note that the orientation of the wall dipole (8,) and
hence the inclination a of the electric field to which
it is related by®®

. (2.19)

2 cos 6,

3cos“ 6, +1) (2.20)

cosa = {
has completely disappeared from the bridge diagram
contributions to electrostriction of O(E?). Using the
relation K,=K_/@, where @ is the inverse compressi-
bility of the fluid, to get the contribution of the bridge
diagrams to electrostriction, and adding this to the HNC
relation (1.1), we obtain the exact relation for eléctro-
striction to O(E?) in an open system:

ap  Ble-1) [ 02 I(p} y)] E*
- =a—7— |1+ — == . 2,21
pi  24mpiy Pt a0 Q ( )

In Eq. (2.19) and (2. 21) the effect of the bridge diagrams
has been factored into the product of two terms, one of
which includes 8(e —1)*E? and the other involves the
density derivative of integral I(p}, ), which contains

the direct correlation function ¢(3, 4) in the absence of
the field. We consider this briefly.

The graphical expansion of the direct correlation func-
tion is

c(83,4= 0—0O + cA) +  0(p?

3 4 3 4
(2.22)

where 0—o0 is the Mayer f function and the field points
are p vertices. The leading term in Eq. (2.22) con-
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tributes nothing to electrostriction since its density
derivative is zero. The first contribution to J{p},y)
comes from

1

= f F3, 1)7(1, 4)(3, 4)A(3, 4)dRydid dry dQ,dr, (2. 23)
Using only the first two terms in the expansion of the f
bond in terms of the Mayer function fy(r,,) for the refer-
ence system and the sum of products of dipole-dipole
bonds multiplied by ey(ry;) =1+ f3(r,,)

BmiDG, j)
.__—3— + .
¥y

f(X(, X;)qu(”u)’reo(”u) ) (2.24)
we obtain the following approximation for I(p},y) to low-
est order in the density and dipole moment m:

2,4 .0
11 = é—s;r%l& ff0(734)[f¢(1’31)¢ (1’14)1)(3, I)D(l, 4)d1‘13d91]

% A(3, 4)dfy dSY, dryy (2. 25)

where ¢( 7;;)=e,(r,;)/7};. Inarriving at Eq. (2.25) the
orthogonality properties of D(i, j) and A(Z, j) have been
used.® The analysis now is similar to the discussion
in Ref. 1 except that it is much simpler due to the fac-
torization of the bridge diagrams. In the same notation

24
I =%‘72n_ff0(7‘34)[1‘-"n(7’34)1)<3’4)+HA(734)A(3’4)]

X A3, 4) dSl, di, drsy, (2. 26)
2. 4
=ﬁTmf f0(7’34)HA(7'34)dr34 » (2.27)
where
-~ 209 “ N
2HD(”34)=HA(7’34)=—3p—1fdrlsd’(rsx)‘ﬁ(”m) (2.28)

and é(r”) is a step function for dipolar hard spheres

d‘;(?’u)zfo(ru)/‘&:iil s

where Ry is the sphere diameter. For this case, the
integral in I, contains the third virial coefficientasa fac-
tor and is equal to —5pjr%/9. Hence,

02 dll 02_ 15 2

(2. 29)

. 4,2 -
1 301 =97 mripy = 16 y (2- 30)
and
ApNB(e—l)z[ 15 z]_E}_
it 7ol LEET RS E . 31)

which is Eq. (4.31) of Ref. 1. By considering the higher
order terms in the expansion for ¢(1, 2) or better approx-
imations to it, one can go considerably beyond Eq.

(2.31),

Comparison of the thermodynamic and statistical
mechanical expressions for electrostriction to O(E?)
leads to the following differential equation for the
dielectric constant:

: 1

) o¢ :(€ L PO
op; 3y

The solution to Eq. (2.32), with the integration constant

1/3 chosen to yield to correct Debye limit is

02 al(pg’y)]
P — 3 | -

(2.32
9py )
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e-1 Y

e+2 1-pp},y) ’
which is Ramshaw’s equation.® On substitution of the
approximation (2. 30) for I(p}, ¥ ) we have

(2.33)

6

e-1 y
e+2 1+15y%/16 °

which yields Jepsen’s result® to O(y®) on expansion.

(2.34)

11l. DISCUSSION

The right-hand side of the differential Eq. (2.32) is
derived from statistical mechanics whereas the left side
of this equation comes from the thermodynamic treat-
ment? of electrostriction in an open system to O(Ez).
The latter assumes that the polarization deunsity
P(x, E) in the bulk fluid is related to the Maxwell field
E by the constitutive relation

Plo, E)= %Tl E + 0(E%).

Equation (3. 1) defines the dielectric constant ¢ which
appears in the thermodynamic expression (1.3). It is
not immediately clear that the ¢ appearing in the statis-
tical mechanical expression for electrostriction is also
defined by Eq. (3.1), since the original derivation®! of
Eq. (2.2), which is the source of the factor (¢ —1) in
Egs. (2.21)and (2. 32), employed a different expression
for the dielectric constant, '™ However, Eq. (2.2) for
the relation between K,; and E can also be derived from
statistical mechanics and the definition of ¢ implied by
the constitutive relation (3.1). It has been shown in a
previous statistical mechanical study, ! that to lowest
order in the field

P(eo, E)=m;plKy (3 cos? 6,,1)! %€, ,

(3.1)

3.2)

where &, is a unit vector in the direction of the field.
Combining Egs. (3.1), (3.2), and (1.2) we immediately
have the desired relation (2. 2). Hence, the ¢ appear-
ing in both sides of our differential Eq. (2.32) and in its
solution {2. 33) is the dielectric constant defined by the
constitutive realtion (3. 1).

That Eq. (3. 1) leads to Eq. (2.33), an exact relation
for the dielectric constant, is indirect support for our
statistical mechanical theory of electrostriction and po-
larization density.'* This includes the zero density (o,
~ 0 and infinite radius (R, ~ < limit*~*® employed in studying
these phenomena at an infinite distance (z - «) away from
the electrified wall. The same limit, or the closely re-
lated one of a solitary charged spherical giant has been
widely used in investigations of the electrical double
layer and dipolar ordering near a charged wall > !¢ All of
these studies ignore the bridge diagrams which are seen
to be essential in a self-consistent treatment of electro-
striction to lowest order in the electric field. It seems
likely that the same diagrams must play an important
role in determining the structure of the electrical double
layer and other equilibrium properties of ions and di-
poles near a charged wall.
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