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The sticky electrolyte model (SEM) is solved analytically in the mean spherical approximation
(MSA) for binding between oppositely charged ions of a symmetrical electrolyte at a distance
L = 0/4 and ¢/5, where o is the atomic diameter, extending earlier analytic studies for L = o,
0/2, and o/3. The excess energy of a fluid of dipolar dumbbells of elongation L <o/2 is
calculated in this approximation by considering the saturation limit when all the ions are
associated to form dimers and steric hindrance prevents polymerization. The results are in
good agreement with Monte Carlo simulations for dipolar dumbbells and compare favorably
with the solutions to the MSA and the HNC approximation using the site-site Ornstein—

Zernike equation.

I. INTRODUCTION

The sticky electrolyte model (SEM), in which sticki-
ness or bonding exists between oppositely charged ions, has
been introduced recently'~> in the study of electrolytes. It is
related to Baxter’s model* for surface adhesion and to the
model for chemical association investigated by Cummings
and Stell.> An important feature of this model is that it en-
ables a dipolar fluid, under appropriate circumstances, to be
considered as the limit of complete chemical association of
ions into dipoles so that the same theory may be used for
both species. Between the extremes of complete dissociation
and complete association we have an equilibrium mixture of
ions and dipoles similar to the behavior of a weak acid.

In this paper we use the SEM to undertake an investiga-
tion of dipolar dumbbells for several values of the charge
(and atom ) separation L ranging from L = 1t00.2 o, where
o is the diameter of the atoms. We employ the mean spheri-
cal approximation (MSA) for the direct correlation func-
tions defined through the Ornstein—Zernike (OZ) equation
and compare our analytic results for the energy in this ap-
proximation with Monte Carlo (MC) simulations® of this
property. We also compare our results for dipolar dumbbells
with the solutions obtained by others’ to the MSA and the
hypernetted chain (HNC) approximations for the direct
correlation functions defined through the site-site Ornstein—
Zernike equation (SSOZ). The direct correlation functions
for the atoms in dipolar dumbbells have different asymptotic
forms when they are defined through the OZ? and SSOZ®
equations, respectively. Our study shows that the energy ob-
tained from the MSA associated with the OZ equation is
sensitive to the details of the asymptotic form of the direct
correlation function used in the formulation of this approxi-
mation. The usual assumption is, that, away from the critical
point, the asymptotic form of the direct correlation function
c;; (r) is given by

¢;;(r)= —Ae,.ej/(kTr), (1.1)
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where 4 = 1, ¢; and e; are the charges, separated by a dis-
tance r, on the atoms of two distinct dipoles, T'is the absolute
temperature, k is Boltzmann’s constant, and the dielectric
constant of the continuum background is taken as unity.
However, the exact value? of 4 for a dipolar dumbbells is €/
(€ — 1), where € is the dielectric constant of the dipolar sys-
tem. We find that the use of 4 = 1 instead of ¢/(€ — 1) in the
MSA leads to an error in the energy of the order of 15% for a
typical dipolar fluid at liquid densities. The effect of the anal-
ogous correction® to the energies calculated with approxi-
mations associated with the SSOZ’ equation has not been
determined.

The SEM seeks to model chemical association between
ions A and B to form a dipole AB or chemically associated
ion pair according to the equation

A* + B™=AB. (1.2)

We assume a symmetrically charged electrolyte containing
ions of equal size for which the Mayer f functions are defined
by

fi(nN=—14+LE —6,)8(r—L)/12, O<r<o

(1.3a)

= exp( —Be,-ej/eor) -1, r>o, (1.3b)
wheree, is the charge onion i, o is the diameter of the ions, €,
is the dielectric constant of the solvent, §;; is a Kronecker
delta, 6(r — L) is a delta function, and 8= 1/(kT). The
parameter £ is the sticking coefficient which measures the
strength of the bonding or adhesiveness between unlike ions
( +, — );itistheinverse of the parameter 7 used by Baxter*
in his study of adhesive hard spheres.

The correlation function 4;; (r) for r <o has the form

h,(r)= —14+A(1-6,,)L6(r—L)/12, r<a,
(1.4)

where the association parameter A is related to the average
number (N ) of ion pairs by'™

(N) =nA(L /0o)?, (1.5)
where 7 = mpo®/6 and p is the total concentration of the
ions. The reduced association constant is given by>
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7TA(L /o)?
3(1—(N))?
When A = 0 the system is identical to the RPM electrolyte,
andwhen (N) = lorA = (a/L)3/neveryionisontheaver-
age bonded to another ion of opposite sign. If L < 0/2, steric
hindrance inhibits polymerization and the system should
only contain dipolar dumbells when (N ) = 1.

The sticking coefficient £ and the association parameter
A are related by

A)=¢y, (L, §) (1.7)
which follows from Eqgs. (1.3) and (1.4) and the cavity func-
tiony,; (r) inEq. (1.7) is related to the distribution function
gij(r)=1+4h;;(r) by

&i(n&)=[1+1,;(rn,& ]y é). (1.8)
When 0 <A < (0/L)%/7 the function y . _ (L, &) is deter-
mined by the approximation (e.g., HNC or PY) used for the

adhesiveness at contact.'
The Helmholtz free energy of the system is given by>?

B [A(SEM) — A(RPM)]

K=k'/o?= (1.6)

'3
= —%n(L/UPJ Vi _(L,§NdE’ (1.92)
Q
=~ (/n)[l-Iny, _(L,A)] —v/(24n)
A
xf Iny, _(L,A")dA", (1.9b)
0

where v =94 (L /0)*/2 =n{N }/2 and n = o/L, and the
excess internal energy E is given by*?

BE“/N=(N)(dIn&/dInf)/2
—(1+dney/dInT)xH /2, (1.10)

where « is the inverse Debye length and H =«J(o + )
where J(o + ) is defined by Eq. (2.18). The first term in Eq.
(1.10) is the binding energy for pair formation, while the
second term (also a function of 1) is determined by the re-
maining electrical interactions, which we determine analyti-
cally in the MSA. When A is zero, the binding energy is zero
and the energy and other equilibrium properties of the SEM
reduce to those of the restricted primitive model (RPM)
electrolyte. The virial equation for the pressure of the SEM?
system is '

BP™/p =2mpc®[1+ hs(L)]/3 — kH /6

(L.11)
wherey’, _ (L) isthederivativeofy , _ (r) with respect to
ratr=Landhg(L)=[h, _(LY+h, . (L)]/2.

The solutions to the MSA for the SEM with L = o, 0/2,
and 0/3 have been given elsewhere'~ and the new results
presented here are for L = 0/4 and /5. This covers nearly
the whole range of values for which Monte Carlo simula-
tions of the energy® dipolar dumbbells are available. When
the charges are turned off we have the corresponding solu-
tions for association between neutral atoms at L = 0/4 and
o/5 supplementing those obtained earlier by Cummings and
Stell® for L = 0/2 and 0/3.

This paper is organized as follows. In Sec. II the solu-
tions to the MSA for the SEM with L = 0/4 and o/5 are

presented together with comments on the solutions for
L = o/n where n is an integer. Our results for dipolar dumb-
bells are discussed in Sec. III where comparison is made with
Monte Carlo simulations and other approximations for
these systems associated with the SSOZ equation.

1. MSA SOLUTION OF THE SEM WITH L=0/4 AND ¢/5
WITH PARTIAL SOLUTIONS FOR L=0/n

For the model considered here we have the exact rela-
tions

he(r)= — 14+ ALS(r—L)/24, O<r<o, (2.12)
hp(r)y =ALS(r—L)/24, O<r<o, (2.1b)

where hg () and A (s) are the sum and difference correla-
tion functions defined by A (r) = [, _(r) +h, . (N]12
and A, () = [h, _(r) — h . (r)]/2. For the correspond-
ing sum and difference direct correlation functions we have
in the mean spherical approximation

cs(r) =0, (2.2a)

cp(r) = AP’/ (&), r>o, (2.2b)

where €, is the dielectric constant of the solvent and we set 4
equal to unity for convenience in our mathematical analysis.
A correction for this is made later in our treatment of dipolar
dumbbells in a vacuum background. The short range part of
the direct correlation function ¢% (7) is defined by

¢ (r) =cp(r) — AB/ (&, 7). (2.2¢)

As discussed elsewhere,' the OZ equation for this
model system can be discussed in terms of a pair of equations
for the sum correlation functions, Ag(7) and ¢ (7), and a
pair for the difference correlation functions, 4, (r) and
¢p (r). As far as possible we keep our analysis general by
taking L = o/n. Consider first the sum OZ equations for
r>0,

r>a,

reg(r) = —qs(r) +27pf g5 (8)gs(t —r)dt, (2.3)
0

rhe(r) = —qs(r) + 21er. gs(8) (r— Bhg(|r —t|)dr.
' (2.4)

When the closure equation (2.2a) is inserted in Eq. (2.3),
we find that

gs(r) =0 for r>o.
From the integrated form of Eq. (2.4),

(2.5)

Js(r) =gs(r) +21ervdth(t)Js(|r—t|), r>0,
[0}

(2.6)
where J, (7) is defined by
J(ry= J‘°° thg (8)dt 2.7
we find
gs(o—/n) —qs (o + /n) = Ad%/(24n3) (2.8)

since Jg (0 — ) =Jg(0 + ) + A0%/(24n*). When O < r < 0,
the solution to Eq. (2.4) is
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g (r) =ar+ b —Ad*(r —a/n)/(24n?) and Eq. (2.5) applies at » = /n. The general form of the
solution depends on whether 7 is even or odd. The solutions
+ (7rp/10/1217)J: (r—1)gqs (1) for n = 4 and 5 are given below:
X8(|r—t| —o/n)dt, 29) (aAyn=4
where
gs(r) = —2ar/p+a(3 —v)/p* —2b /p + A cos(xpr)
=1-2 t)dt 2.10
¢ e J: %1 ( ) + B sin(xpr) + E cos(ypr)
and + Fsin(ypr) (0<r<o/4) (2.14a)
b=21rpf tgs(t)dt. (2.11)
0
=ar/p+a(2—v/4)/p*+ b/
The detailed expressions for g5 (s) are different for three P ( VAP +b/p .
separate regions of 7: — Bx cos[xp(r — 0/4)] + Ax sin[xp(r — 0/4) ]
gs(r) +pgs(r+o/n) =ar+ b (0<r<o/n) (2.12a) — Fy cos[yp(r — a/4)] + Eysin[yp(r — o/4) ]
qs(r) + plas(r+o/n) —qs(r—o/n)] (0/4<r<or2) (2.14b)
=ar+blo/n<r<(n—1)o/n], (2.12b)
qs(r) +pgs(r—o/n) =ar+ b[(n—1o/n<r<ol, = —ar/p+a(2—v/4)/p*—b/p
(2.12¢) + Ax cos[xp(r — 0/2)] + Bx sin[xp(r — 0/2)]
where p = mpAd?/(12n?). These are a set of coupled differ- — Ey coslyp(r — 0/2)] — Fy sinlyp(r — 0/2)]

ential equations whose solutions for » =2 and 3 have al-
ready been given by Cummings and Stell.> The solutions
become more complicated as n increases in magnitude. For a
given integral n, it is necessary to split the interval [o/n, =2ar/p+a(3—v)/p*+2b/p

(n — 1)o/n] into subintervals of width ¢/n with g (7) con- — Bcos[xp(r — 30/4)] + A sin[xp(r — 30/4) ]

tinuous in this range. Thus
[m=23,.(n—1)] + Fcos{yp(r — 30/4)] — E sin[yp(r — 30/4)]
(2.13) (Bo/4<r<o), (2.14d)
J

(0/2<r<30/4) (2.14c)

qs(mo — /n) =gqs(mo + /n)

where x = (/5 — 1)/2 and y = (/5 + 1)/2. Substitution in Eqs. (2.5), (2.8), (2.10), (2.11), and (2.13) withm =2, 3
provides six equations which can be solved to give the coefficients g, b, 4, B, E, and F which are given in Appendix A.

(byn=5:
The solution for g (r) in the range (0, o) is

gs(r) =ar*/2 + ( —a/p + 2a0/5 + b)r + D + A cos(pr)

+ Bsin(pr) + E cos( 3pr) + Fsin(3pr) (0<r<a/5) (2.15a)
=a/p* — 2a0/5p — Bcos[p(r —a/5)] + A sin[p(r — a/5)]

— BFcos[ Bp(r—0/5)] +B3Esin[ 3p(r—a/5)] (0/5<r<20/5) (2.15b)
=ar*/2 + br +aoc(1 — 20/5)/5p + b(1 — 2v/5) + D

—2E cos[ V3p(r — 20/5)] — 2Fsin[ V3p(r —20/5)] (20/5<r<30/5) (2.15¢)
= a/p* — 2a0/5p — B cos[p(r — 30/5)] + A sin[p(r — 30/5)]

+ 3Fcos[ 3p(r — 30/5)] — BEsin[ {3p(r —30/5)] (30/5<r<40/5) (2.15d)

=ar*/2 + (a/p — 2a0/5 + b)r + 2b(1 - 20/5)/p+ D
— A cos[p(r —40/5)} — Bsin[p(r — 40/5)]
+ E cos[ V3p(r — 40/5)} + Fsin[ \3p(r — 40/5)]1 (40/5<r<o0). (2.15¢)
The constants a, b, A, B, D, E, and F are determined from Egs. (2.8), (2.10), (2.11), and (2.13) (withm = 2,3,4) and are giv-
en in Appendix A. The g5 (r) functions for n = 2,3,4, and 5 are plotted in Fig. 1 together with the corresponding ¢ (7)

functions discussed below.
As shown elsewhere!~ the difference OZ equation for electrolytes leads to the following pair of equations:
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2 ) = g5 + 2o ) — [~ By + 5105
0
— (2.16)
::’: and
z ! B(r) ; -
= D rhy(r) =q%(r) +21rp[f a2 (s)(r—ys) hD(|r—s|)ds]
0
‘:7: 0 — 2mpMJ, (r). 2.17)
o
g5 (r) =0 for <0, M is related to the inverse Debye
QS(T) length k by — 27pM = k and J), (r) is defined by
_1 o0
0. .2 4 .6 .8 1. Jp(r) =f shy, (s)ds. (2.18)
r/o In the MSA,

0
FIG. 1. The g5 (r) and ¢}, (r) functions inside the hard core for dipolar cp(N=0 (r>0), (2.19)
dumbbells. The different elongations L = o/n with n =2,3,4, and 5 are and it follows from Eq. (2.16) that
identified by the discontinuities in these functions at r = 0.5, 0.333, 0.25, o
and 0.20, respectively. ap(r) =0 (r>o). (2.20)

The integrated form of Eq. (2.17) is

Jp(r)= —g5(r) —=M/2 + 2n'pJ:ds g3 () (Jr—s|) — KJ:JD (s)ds. (2.21)
The presence of a delta function in 4, (7) distinguishes J,, (o + ) from J, (o — ):

J=Jp(o—)=Jp(0+ ) +Ai0%/(24n?) (2.22)
and it follows from Eq. (2.19) that

5o+ /n) =q5 (0 — /n) + Ad?/(24n?). (2.23)

When 0 < r < 0, the solution to Eq. (2.17) is
gy (r) =2mpMJ,(r) — (ﬂpia/IZn)f O —=08(r—t| —o/n)dt + Ad?6(r — o/n)/(24n?) (2.24)
0

and the detailed expressions for g% (7) are

95 (r) —pg%(r+o/n) =pM—H (0<r<a/n), (2.252)
a5 (r) —plgp(r+o/n) —gy(r—o/n)] = —H [o/n<r<(n—1)a/n], (2.25b)
95 (r) +pgp(r—o/n)y = —H [(n—1)o/n<r<o], (2.25¢)

where H = — 2mpMJ(o + ) =k J(o + ). Like the corresponding relations for g5 (r), this set of coupled differential equa-
tions is solved by similar methods which include splitting the interval [o/n, (n — 1)o/n] into subintervals of width o/n in
which g3, (7) is continuous and Eq. (2.20) applies at » = o/n. Thus we have the additional boundary conditions

@ (mo+/n) =qh(mo—/n) [m=23,.(n—1)] (2.26)
forintegral n > 1. The solutions for n = 1, 2, and 3 have been obtained earlier in a series of papers'— and the solutions for n = 4
and 5 are given below.

(c)n=4:
4% (r) = —2H /p + A cos(xpr) + Bsin(xpr) + E cos(ypr) + Fsin(ypr) (0<r<o/4) (2.27a)
= — M+ H/p+xBcos{xp(r —o0/4)] — xA sin[xp(r — 6/4)]
+ yFcos[yp(r — 0/4)] —yEsin[yp(r —o/4)] (0/4<r<o/2) (2.27b)
= — H/p+ x4 cos[xp(r—o/2)] + xBsin[xp(r — 0/2)]
—yE cos[yp(r — 0/2)] — yFsin[yp(r —0/2)] (0/2<r<30/4) (2.27¢)
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= —M+2H /p + Bcos[xp(r — 30/4)] — A sin[xp(r — 30/4))
— Fcos[yp(r — 30/4)] + Esin[yp(r —30/4)] (30/4<r<o), (2.274)

where x = (5 — 1)/2,y = (54 1)/2, and H =« J(o + ). Applying the boundary conditions given in Egs. (2.20),
(2.23), and (2.26) we find the coefficients 4, B, E, and F as linear combinations of M, H, and p. The results are given in the Ap-
pendix B.

(dyn=S5:
5 (r) = (pM /3 — M)r + D + A cos(pr) + B sin(pr) + E cos( V3pr)
+ Fsin(3pr) (0<r<o/5) (2.28a)
= —2M /3 + Beos[p(r—a/5)] — A sin[p(r — a/5)1 + J3F cos| V3p(r — a/5)]
— BEsin[ 3p(r—o/5)] (0/5<r<20/5) (2.28b)
= (pM /3 — Hyr + D + (H /p — 20M /15 + 20H /5) — 2E cos[ \3p(r — 25/5) ]
—2Fsin[ 3p(r — 20/5)] (20/5<r<30/5) (2.28¢)
= — M /3 + Bcos[p(r — 30/5)] — A sin[p(r — 30/5)] — J3F cos[ V3p(r —30/5)]
+ 3Esin[ {3p(r —30/5)] (30/5<r<40/5) (2.28d)
= (PM/3—H)r+ D+ 2(H/p —2wM /15 4+ 20H /5) — A cos[p(r — 40/5)]
— Bsin[p(r — 49/5)] + E cos[ 3p(r — 40/5)) + Fsin[ \3p(r —40/5)] (40/5<r<o). (2.28¢)

The constants A, B, D, E, and F are obtained from the boundary conditions, Eqgs. (2.20), (2.23), and (2.26) (withm =2, 3,
4), as linear combinations of H, M, and p. The results are given in Appendix B. We will next comment on the solutions for arbi-
trary n.

The forms of the functions ¢, () and g5 (7) which determine the correlation functions and the equilibrium properties
depend on whether 7 is odd or even. We restrict our remarks to the g3, (#) functions, since they determine the energy of the sys-
tem which is of particular interest to us, but analogous remarks also apply to the corresponding sum functions g5 (7). Foreven
n = 2m the solution has the form

gy(r)= —mH /p + z [4; cos(x,pr) + B, sin(x;pr)], O<r<o/n

i=1

=-—-M+H/p+ i {4, cos[x,p(r —a/n)] + B, sin{x,p(r —a/n)]}, o/n<r<2o/n

i=1

=—(m—1)H/p+ i {43 cos[x,p(r —20/n)] + B sin[x,p(r —20/n)]}, 20/n<r<3o/n

i=1

= —-M+2H/p+ i {4, cos[x;p(r — 30/n) ] + By sin[x,p(r — 3a/n)]}, 3o/n<r<4o/n

i=1

=—H/p+ i {4,,_, cos[x,p(r — (n —2)a/n)] + B,,_, sin[x;p(r — (n —2)o/n)]}, n;2 cr<r<n; 1 o
i=1
= —M+mH/p+ i {4,, cos{x,p(r — (n — 1)o/n)] + B, sin[x,p(r — (n — 1)a/n)]}, — 1 o<r<o
i=1
(2.29)

and for odd n = 2m + 1 we have

@) =[pM/(m+1)—H]r+ 4o+ Y [A cos(x,pr) + B, sin(x,pr)], O<r<o/n
i=1

= —mM/(m+1)+A4,+ i {4, cos[x,p(r —o/n)] + B, sin[x,p(r —o/n)1}, o/n<r<2o/n
i=1
=[pM/(m+1) —Hlr+ 4, +{H/p—2[pM/(m + 1) — H ]o/n}
+ i {4 cos[x;p(r — 20/n)] + By sin[x,p(r — 20/n)1}, 20/n<r<3o/n
i=1
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= —(m-1M/(m+1)+4,+ Z{Ai4 cos[x;p(r—30/n)] + B, sin[x,p(r — 3a/n)]}, 3o/n<r<édo/n

i=1

=—-M/(m+1)+4,+ Y {4, cos[x,p(r — (n—2)a/n)]
i=1
. n—2 n—1
+ B, _, sm[x,-p(r—(n——2)o/n)]}, o<r< o
n n

=[pM/(m+ 1) —Hlr+A,+ m{H /p - 2[pM /(m + 1) — H Jo/n}

+ i{Ai,, cos[x,p(r — (n— 1)o/n)] + B,, sin[x,p(r — (n — o/n) 1}, —1 o<r<ao. (2.30)

i=1

The solutions contain similar trigonometric forms but the remaining terms, which are functions of H, M, and p, are different
for odd and even n. A term involving r is also present in alternate intervals of width o/n for odd 7. The coefficients 4 ins Bins
and 4, (for n odd), obtained by applying the boundary conditions given in Eqgs. (2.20), (2.23), and (2.26), are functions of
H'/v,M’, and v/(12) where H' = H /o, M' =M /0?, and v =po =154 /(2n*) =n(N)/2.

The function H ' is related to the energy of the system through Eq. (1.11). We have shown elsewhere? that H ' in the MSA
is given quite generally for L = o/n (where n is an integer) by

= —vd) +x(c—e) —{(1 —vd)’ + 2x[(1 —vd) (c — )] + 2bv(1 —g) + X}'/2

, 2.31
24by ¢ )
where x = xo,
X=x*(c—e)*>—2b(1 -2f)] (2.32)
and b, ¢, d, e, f, and g (which are trignometric functions of v for n > 1) are the coefficients of H', M ', orv/ (127) in the relations
J‘vdtq(z))(t)=[bH'+CM’+dv/(1277)], (2.33)
0
/n
g3(0) —p dtq(t) = — [eH' + /M’ +gv/(127)]. (2.34)

0

We find that X = 0 from the detailed solutions of n = 1 to 5. Defining

a,= (1 —vd), (2.35)
a,=(c—e), (2.36)
a;=aa,+2bv(l —g), (2.37)
a, = by, (2.38)

we have the remarkably simple form
_a;+ax — [a] + 2xa,]'?
h 24a,,

for the sticky electrolyte model. The solutions for n = 4 and 5 are given below together with those for n = 1, 2, and 3 for
comparison.

(iY)n=Lv=nA/2:

HI

(2.39)

a, = (1+v), (2.40a)
a,=(1—v), (2.40b)
a;=1=2aq,. (2.40c)
(ii) n=2,v =71 /8, ¢ = cos(v/2), s = sin(v/2):
a,=2-—c¢ (2.41a)
a,=2(—3+3¢c+9)/, (2.41b)
ay=2(c*4+c—2+2s—cs)/v, (2.41¢c)
a,=4(1 - )/’ (2.41d)

(iii) n = 3, v =5A /18, ¢ = cos( y2v/3), s = sin( \2v/3):
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a,=2(2 —5)v+6(2y2 — 25 — 2¢),
@y =(— 32445 — V20)u/3+ (542 — 85— 2c) + 6( — V2 + 5+ V2¢)/v,
@y = 6(12 — 17425 + 325 — 4c + 125%) + 18( — 8 + 725 — 52c5 + 8¢ — 25°) /v,
a,= (3V2 — 45+ V26)/3 +2( — 24 254+ 2¢) /v + 32(1 — ) /V*.

(iv) n =4, v = nA /32, ¢, = cos(vx/4), s, = sin(vx/4), c, = cos(vy/4), s,=sin(vy/4),
x=(5—1)/2,andy=(5+1)/2:

a, = \5(2¢,8, + 5¢, + 2¢,5, — 5¢; — 35, — 35,)
—9¢,c, — 10c,8, — 5¢, + 10¢,s, — 5¢, — 65,5, + 155, — 155, + 24,

a, = [7J5( — 5¢,5, — 5¢c, — 5¢15, + S¢y + 65, + 65,)
+ dc,c5 + 75¢,8, + T5¢, — T5¢,s, + 75¢, — 34s,5, — 605, + 60s, — 154]/v,

ay = [ — V5(50c,c,8, + 50c,c,5, + 8leysis, + 27¢,87 + 108c,5;s, + 108¢,s,
+ 27c,s, + 81c, + 815,55 — 108¢;s,s, + 27¢,8; — 27¢,55 + 108¢,s,
— 81c, — 220535, — 220s,57 — 220s; — 220s,)
+ 3(38¢,¢,5,5, + 38¢,¢;, + 25¢,575, + 55¢,57 + 80c¢,8,5; + 80c,s,
+ 55¢,8, + 25¢, — 25¢,5,55 + 80c,5,5, — 55¢,8, + 55¢,55 — 80¢,s,
+ 25¢, — 885252 — 7657 — 328s,5, — 7652 — 88) /v,

a, = [425(c,5, 4+ €2+ €,5, — ¢ — 5, — 5,) — 2(2¢,¢, + 45¢,5, + 45¢, — 45¢,5,
+ 45¢, — 25,5, — 455, + 455, — 92) }/v.
(v) n=5,v="1A4/50, ¢c; = cos(v/5), s, = sin(v/5), ¢, = cos( 3v/5), , = sin(3v/5):
a, = —33v(c,c; + 5, — 3) — 53(3cic, + 2¢,5, — 2¢, + 18¢; + 105, — 25)
— 35,0(5 — 2s,) — 30s,(7 — 5¢; — 3s¢),
a,= — 3u( — 2,6, — ¢y + Tey — 125, + 14)/5
— V3(2¢,c, — 4¢,5, + ¢ + 9c; + 40s, — 30)
— 10+/3(4c,¢, + 3,8, — 4c, — 40c, — 21s, + 40)/3v — 35,0(7s; — 4¢, — 8)/5
—5,( — 16¢, — 69s; + 52) — 10s,(23¢, + 125, — 23) /v,
a; = 15/35,( — 49¢,¢,8, + 48¢,c;, + 12¢,57 + 14c,s, — 24c, — 194¢,s, + 168¢,
— 33657 + 679s, — 336)
+ 150 /35, (4 ¢85, — 21eic, — 21e,8% + deysy + 21c, + 224¢,s; — 291¢; — 280s,
+291)/v
+ 45(28¢,c,5; — 28¢,c, — Tepst — 8cys, + 14c, + 56¢,5,53 + 56¢,5, — 47¢,53
— 50¢, + 1005352 + 9457 — 196s,57 — 1965, + 945> + 100)
+ 150( — 7e,¢,5, + 36¢,c, + 36¢,57 — Teps; — 36¢, — 197¢5,55 — 191¢ys,
+ 252c,5% + 252¢, + 244s,55 + 2415, — 25253 — 252) /v,
a,= —33(2¢,¢, + €, — Tey + 125, — 14) /10 — 6 3(cp5;, — d¢, — 75, + 4) /v
—203( —cicr +C3 + T, — T)/v* — 9s,(4¢, — Ts, + 8)/10
— 65,(7c, + 125, — 7)/v — 240s,(1 — ;) /V%.
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(2.42b)
(2.42¢)
(2.42d)
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(2.43b)
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(2.43d)

(2.44a)

(2.44b)

(2.44¢)

(2.444)
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TABLE 1. Numerical values of the constants ¢,, ¢,, and ¢, in Eq. (2.47) for
the energy of dipolar dumbbell fluids of different elongations L = ¢/n in the
MSA.

n ¢ ¢ s

1* 3.0 1.0 4.0

2 22921927 0.458 158 68 1.550 187 9
3 1.901 546 2 0.258 259 56 0.735 694 4
4 1.616 2200 0.164 874 27 0.399 644 61
5 1.398 506 9 0.114 156 34 0.239 451 56

“When n <2 trimers and more complex association products may be
formed in addition to dipoles, see Refs. 2 and 3.

A check on these expressions is provided by the recovery of
H'in the MSA for the RPM in the limit v — 0 when we con-
firm that

(14+x)—(1+2x)!"2
129 '
In the saturation limit when (N ) = 1 and v = n/2 we rein-
terpret x as the reduced dipole moment defined by
x' = 2n(Amp/kT) " p, (2.46)

where the dipole moment u = eo/n. Here the dielectric con-
stant of the vacuum background has been taken to be unity
and 4 = €/(e€ — 1) where € is the dielectric constant of the
system which depends on the elongation of the molecules.®

It follows from Eq. (1.31) that the electrical energy of
the dipoles is given by

—x[(c; +ex') — (c} +ex')'?]
247 ’

H'(RPM) = (2.45)

ﬂEex/ND =
(2.47)

where x is the unmodified « and ¢,, ¢,, and ¢; are obtained
from the corresponding a,, a,, a;, and a, by setting v = n/2
and N, = N /2 is the number of dipoles. Numerical values
for the coefficients with n =1, 2, 3, 4, and 5 are given in
Table I.

2.5
2.
:%1.5
- gS(r)
; 1
= 5 .
)
gplr
-.5
| 2 3 4

r/o

FIG. 2. The sum and difference distribution functions g5 () and g, (7) for
dipolar dumbbells at a reduced density p,0° = 0.526 and reduced dipole
moment u* = (u2/kTo®)"/? = 1.42. The different elongations L = o/n
with n = 2, 3, 4, and 5 are identified by the cusps in g5 (7) at r = 1.5, 1.333,
1.25, and 1.20 and discontinuities in the slopes of g5, (#) at these distances.

1.5

gAA(r)

r/o

FIG. 3. The atom-atom distribution functions of like charges ( + + or
— — ) on different dipoles for the systems shown in Fig. 2.

ill. RESULTS AND DISCUSSION

In Fig. 2 we plot the sum and difference correlation
functions gs (#) and g, (r) for n =2, 3, 4, and 5 in the satu-
ration limit A = n®/7 for dipole formation and in Figs. 3 and
4 we have the corresponding atom-atom correlation func-
tions. The reduced dipole moment u*= (u?/
kTo)''? = 1.42 and reduced density p, o> = 0.526 for all of
the dipolar systems shown in these figures. Here p, is the
density of dipoles. Comparisons with Monte Carlo simula-
tions for elongations corresponding to # = 2 and 3 have been
made by us in Ref. 2. The energy of these dipoles is plotted as
a function of the elongation in Fig. 5 at constant reduced
density and dipole moment. We see that it becomes less nega-
tive as the elongation increases which is the opposite of what
one might expect from the multipole expansions.

These states however have different molecular and ex-
cluded volumes, which suggests® examining the equilibrium
properties at constant molecular volume, when the radius d
of the equivalent hard sphere is related to the atomic diame-
ter o by

2.5

r/o

FIG. 4. The atom-atom distribution functions of unlike charges ( + — or
— + ) on different dipoles for the systems shown in Fig. 2.
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1.5
1.5
; 1.25 Monte CarLo
a
=
- 1 . ~
e >
=) o
== &= 1
\ I .
>
Ea
| 5 MS(SS02) HNC(SS02) D
b
.75
0. .2 .4 .6 .8 1.
L/o
0. ) )
0 2 4 6 8 1 FIG. 6. The excess energy as a function of elongation L for the dipolar sys-

FIG. 5. The excess energy as a function of elongation L for the dipolar sys-
tems whose distribution functions are shown in Figs. 2—4. The dipoles mo-

tems shown in Table IV. The molecular volumes are the same ir. all of these
systems. (u* = (u*/kTd?)"/? = 1.37, p3 = ppd > =0.78.]

tion function defined by the SSOZ equation without further

e : 2
:;:;s), ,f“: 1,2;‘;17:12 pzr; ___ﬂ(lfszza]rfle in all systems. [u*=(u"/ explicit consideration of the asymptotic form of the direct
' correlation function associated with this equation.® Their
results were obtained numerically. Figure 6 shows a plot of
the energies as a function of the dipole elongation; it is clear
d*=[1+3/(2n) — 1/(2n*)]10>. (3.1)  that the overall agreement of all of the approximations with

We choose states defined by a reduced density p3
=pp,d*=0.78 and reduced dipole moment u*
= [u?/(kTd?)]'? = 1.37 for nranging from 1 to 5 to over-

lap with those studied by Morriss® in his Monte Carlo simu-

lations. Note the use of d instead of o in the definitions of z*

and p3. Our calculations of the energy of dipolar dumbbells

in MSA are compared with Monte Carlo results in Table II.

The dielectric constant € used in the calculation of 4 [see

Egs. (1.1) and (2.46) ] is listed in the second column of this

table as a function of the elongation L as determined by Mor-

riss in his MC simulation.® The error in these estimates of €
is reflected in the uncertainties in our MSA energies in col-
umn 4. The energies in column 5 are from the MSA assum-
ing A = 1. The results show that the factor4 = €¢/(¢ — 1) in
the asymptotic form of the direct correlation function®

makes nearly a 15% contribution to the excess energy of a

typical dipolar fluid at liquid densities bringing it into closer

agreement with the simulations. In columns 6 and 7 we list
the energies calculated by Morriss and MacGowan’ using
the MSA and the HNC approximation for the direct correla-

the Monte Carlo (MC) simulations is satisfactory, repro-
ducing the trend in the change in energy with elongation as
well. Uncertainties in the dielectric constant® and energy de-
termined by MC simulations make it difficult to discuss the
relative accuracies of the different approximations except to
note that the approximations based on the SSOZ equation
appear to deteriorate as L becomes large while the opposite is
true of the MSA associated with the OZ equation. Although
the MSA offers the advantage of an analytic solution it
suffers from the defect’ that the excess energy tends to a
small but finite constant in the limit of zero density. How-
ever, the energy at zero charge is given correctly as zero. An
approximation which bears a close resemblence to this is the
analog of the zero-pole approximation'®!' derived from the
SSOZ equation. The two are however quite distinct since
they are based on two different OZ equations and have dif-
ferent asymptotic forms for the direct correlation functions.
It is also known that the excess energy in the analog of the
zero-pole approximation applied to dipolar dumbbells is not
equal to zero in the limit of zero density or zero charge.'!

TABLE II. The excess energy E /Ny, kT of dipolar dumbbells of the same molecular volume but different elongations. p* = (u?/kTd>) V2 =137,

ppd?=0.78,d*=[1+3/(2n) — 1/(2n*)]0°.

E*/NpkT(0Z) E</NpkT(SSOZ)
1/n e(M.C)? E*/NpkT(M.C.) MS(4=¢€)/(e—1) MS(4=1) MS HNC
0.12 —1.41
0.2 10.9 + 1.7 —1.32 — 1.08 +0.02 —0.971
0.25 (102 £ 1.7) — 1.07 £ 0.02 —0.947
0.3 —1.25
0.3333 (95+17) — 1.03 £ 0.025 —0.905
0.4 —1.16 —1.10 —1.17
0.5 77+12 —1.10 —0.965 1 0.025 —0.827 —0.917 —0.990
0.6 — 101 —0.779 —0.846
0.7 —0.93
1.0 ( 3.0+ 0.6) —0.855 +0.018 —0.571

*Values in parentheses interpolated from Fig. 1 of Ref. 9.
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Solutions to the HNC approximation for the SEM have ACKNOWLEDGMENTS
been discussed by us earlier? and it should be possible to use
the same methods to determine the equilibrium properties of
dipolar dumbbells in the saturation limit of complete associ-
ation. We have not pursued that here to keep this report from
getting too long but hope to study this in the future. |

The computing and other facilities made available to us
as guests at the National Bureau of Standards are most grate-
fully acknowledged. This work was supported by a grant
from the National Science Foundation No. CHE-8305747.

APPENDIX A: THE COEFFICIENTS IN THE EXPRESSIONS FOR q4(r) for n=4 and 5

These are obtained as solutions to the following equations which follow from the boundary conditions to g5 (r) and the
definitions of @ and b given in the text.

(ayn=4:
(2—30)a/(2*) —3b'/v+c A"+ (5425, —1)B'/2+ ,E' + (5 + 25, + 1)F'/2 = 1 /384,
a/v+26" v+ (5—1)(s; = DA 72+ ¢,(1 = 5)B'/2 + (5 + 1) (1 + 5,)E" — ¢;( Y5+ 1)F'/2 =0,
—(2430a/(2%) =30 /v+ e, (V5 —1)A"/2+ (55, — 5, + 2)B"/2 — c;,( 5+ DE'/2 — ({55, + 5, + 2)F'/2 =0,
(— 1570 + 1209 + 4v%)a/(40%) + 6( 5+ 3)(1 —c, +5)A" /v +69( 5+ 3)(1 —c, —5,)B"/v
+6n(V5—=3)(c, 45— DE'/v4+69(5—=3)1 —c, +5,)F'/v=1,
— 155a/v* + (4v — 159)b '/ (4v) + 37[ 5(4ve, — vs, — 3v — 8¢, — 8s, + 8)
+ 8vc, — Tvs, — 5v — 16¢, — 165, + 16]4 "'/ (2v?)
+ 37[ V5(ve, + dvs, + 8¢, — 8s, — 8) + Tve, + 8vs, — 4v — 16¢, — 165, — 16]B"/(20?)
+ 3 V5( —4ve, —vs, + v + 8¢, — 8s, — 8) + 8uc, + Tvs, — Sv — 16¢, + 165, + 16| E"/(2v7)
+ 39[ V3(ve, — dvs, + 8¢, + 85, — 8) — Twe, + 8vs, + 4v — 16¢, — 165, + 16] F'/(20%) =0,
(w+3)a/v*+2b"/v+5A"'—c,B' —s,E' +c,F' =0.
byn=>5:
(0 + 20— 10)a/(100°) +b'/5+c,A" + (s;+ 1)B' + D’ + c,E' + (3 +5,)F' = 1 /600,
(5—3)a/(5v*) —b'/v+s54"—c,B'—D' + ({35, + 2)E' — 3c,F' =0,
(v* + 6v — 10)a/(100%) + (v + 5)b'/(50) + B’ + D' —2c,E’ — (3 + 25,)F' =0,
(5—6v)a/(5v*) —2b'/v+ (s, + DA’ —¢c,B' =D’ — (14 35,)E’' + 3¢,F' =0,
(42q0* + 607 + 60077 + 1250%)a/ (1250%) + 187(v + 10)b'/(25v) + 249(1 —¢,)A /v — 24ys,B" /v + 363D '/5 = 1,
— 357(3v* + 20v + 40)a/(50v%) — (48nv + 690y — 1250)b "/ (1250)
+ 249 (3ve, + 2us, — 20 — 55,)4 "/ (50%) + 247( — 2vc, + 3vs, + 2v + 5S¢, — 5)B'/(5v7)
— 189D '/5 + 24n(1 — ;) E'/(5v) — 24%s,F'/(5v) =0,
(v +10)a/(100) + (v +10)6"/(50) — 14" —5.B' + D' + c,E' + 5,F' =0,
whereb’' =b/0,A'=A/0*,B'=B/0*,D'=D /0>, E'=E /0% and F' = F /o™

APPENDIX B: THE COEFFICIENTS IN THE EXPRESSIONS FOR g2(r) for n=4 and 5
(ayn=4:
A'=[a,H’ +a,M’ + a/(129)]/(Det 4),
a, = [ J5(6s,5, + 155,¢, — 10s, + 3¢,8, + 2¢,¢, + 3c, — 10s, - 15¢, + 6)
+ (225,85, + 27s,¢; — 145, — 3¢5, — 2¢4¢, — 3¢, — 145, — 27¢c, + 22) 1/,
ay = 5( — 38,5, — 55,¢, + 55, — €8, — ¢,¢;, — €5 + 58, + 5¢, — 3)
+ (— 1ls)5, — 9550, + Ts, + €58, + €16, + ¢, + 75, + 9¢;, — 11),
a3 =5(—3s,¢; — ¢y + 2¢;) + ( — 35,0y + 20,5, — ¢, + 6¢,),
B’ =[bH'+b,M'+ bw/(129)]/(Det 4),
b, = [ V5(15s,5, — 65,¢, + 35, + 20,5, — 3¢,¢, — 155, + 10¢, — 3)
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+ (27848, — 225,¢, + 35, — 20,8, + 3c,05 — 4y — 275, + 14¢; — 3) 1/,
by = 5( — 55,5, + 35,6, — 5, — €,5, + €,¢, — 55, — 5¢, + 1)
+ (— 95,5, + Uls,6y — 8, + €5, — €16, + 2¢, + 95, — Te; + 1),
by = 5( — 35,5, — 5, + 25,) + ( — 35,85, + 5, — 2¢,¢, + 65, + 2),
E'=[e,H' +e,M’' + e;0/(1297)]/(Det 4),
e, = [ V5( — 655, + 35,6, — 108, + 15¢,5, — 2¢,¢, + 15¢, — 105, — 3¢; — 6)
+ (225,85, + 3856, + 145, — 27¢,8, — 2¢,¢, — 27c, + 145, — 3¢, + 22) }/v,
e, = 5(35,5;, — 5,6, + 55, — 5¢,8, + ¢,6, — S¢, + 55, + ¢, + 3)
+ (— 1.5, — 8500 — Ts5 4+ 9¢o5, + 465+ 9¢, — sy + ¢, — 11),
e; = 5( — 35,6, — 2¢, + ¢;) + ( — 255¢, + 358, + 6¢, — ¢y),
F'=[fiH' + M’ +f0/(129)]/(Det 4),
fi=[V5(158,8, — 255¢, + 155, + 6¢55, — 3¢,¢, + 10¢, — 35, — 3)
+ ( — 275,85, — 25,¢, — 275, — 22¢,8, — 3¢, — 14¢, + 35, + 4¢, + 3) ] /v,
fo= 5( — 55,8, + 5,6, — 55, — 3,8, + €16, — Sc; + 5, + 1)
+ (95,5, + 5:¢; + 95, + 11,8y + 65+ Ty — 5, — 2¢, — 1),
fi= 5(— 35,5, — 25, + 5,) + (35,5, + 65, + 2,6, + 5, — 2),
Det 4 =6/5(s, +5,) + 2( — 78,5, + 2¢,¢, — 7).
(byn=>5:
A'=[a,H +d,M’' + a/(129)]/Det 5),
a,=3[3(73s, — 43— 125,5, + 7s,)

+5(33c16, — 3e, + 1235, — 21 3¢, + 743 — 215,85, + 36s,¢, — 12,5)/v],

a, =3v( — 735, + 443+ 125,5, — 7s,) + 5( — 33¢c,¢, + 3¢, + 935,
+213¢c, — 1943 — 1555, — 365,¢, + 33s,),

as = 15( 3¢5, — B, — 735, + 93¢, — 243 + 125,85, — 158,¢, + 355),
B'=[bH +b,M'+byw/(129)]1/(Det5),

b, =9[ (3¢, — 7 3¢, + 125,¢,)
+ 5( V3,5, — T35, — 43¢, + 43 + 125,85, — Is,¢, — Ts,) /v],
by = 30( — 3¢, + T3¢, + 125,¢,)
+ 15 — \Beys, + 3ey + T35, — 33¢, — 43 — 1255, + 55,¢, + 755),

by =15( — 3cye, — V3cy + 935, + 73¢, — 53 — 1555, — 125,¢, + 9,).
D'=[d,H' +d,M' +dw/(129)]/(Det 5),

d, = 6[(2+3¢c,c;, + 1235, — 143 — 215,85, + 24s,) + 5( 3es5; — 23¢5¢,
+ V3¢, — 19435, — 11 3¢, + 18 {3 + 33s,5, + 195,¢, — 31)/v],

d, =2v( —23¢,c, — 1235, 4 14 3 4 25,5, — 245,) + 5( — \Bey5; — 23¢,c,

+23¢, — 535, — 103¢; + 103 + 95,5, + 175,¢, — 17),
d,=30( — V3c,c, — V3s; + 343 + 25,5, — 55,),
E' = [e,H' +e;M’' +ew/(129)1/(Det 5),
e; =3[ (23c1c, + 335, — 243 — 6545, + 35,) + 5(23¢,8,
+ V3eie, — V3cy — 235, — 53¢, + 53 + 35,8, + 10s,¢, — 10s,)/v],
e, =v(—2+3c,c; — 335, 4+ 23 4 65,5, — 35,) + 5( — 23,5,
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+ V3e,¢, + V3¢, + 5435, + 53¢, — 743 — 95,5, — 10s,¢, + 135,),
e3=15( —33c,5, — 2\Beic; + 3V3¢; — 35, + VBey + 2515, — 3556, + 5,),

F' =[fH +fM'+fp/(12)]1/(Det 5),

f,=3[(23s,¢, + 6¢,8, — 3¢, — 3¢;) +5(2 V358, + V35,6, — 35,

— 3¢,y — 10¢,c, + 10c, — 35, — 20, + 2) /],

fo=v(—28s,¢, — 6¢58, + 3¢, + 3¢;) + 5( — 23,5, + V3,6, + V35,

+ 9C2.gl + 100102 - 1302 + 331 bt Cl - 2),

o =15( — 3 35,5, — 23556, + 335, — 26,5, + 3¢;¢, — 5 + 55, + 3¢, — 5),
Det 5 =30(23¢,¢, — V3¢, + 1235, + 7+3¢c, — 143 — 2155, — 125,¢, + 24s,),
whered'=A /0>, B'=B/0*,D'=D/0c* E'=E/o* and F' = F /o>
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