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Weak electrolytes and other association reactions are modeled as sticky spheres. An analysis of
the density expansion, including the bridge diagrams, of the cavity functions y,5 (L) for sticky
hard spheres (charged or uncharged spheres binding at a distance L) leads to an
approximation which provides the degree of association a as the solution to a simple quadratic
equation determined by the association constant K, and the cavity function 35 (L) for the
reference system in which the chemical bonding between the reacting species has been turned
off. Similar relations are assumed to hold when the bonding is directional and specific enough

to lead only to the formation of dimers. Applications to the determination of the reference
cavity functions for acetic acid and monochloro acetic acid from experimental data of the
degree of association are discussed. In a discrete solvent, the approximation scheme for «
remains the same, except that the reference cavity function is scaled differently. Solvent
medium effects on the association constant are shown to be related to the cavity function of the
undissociated dimer in a pure solvent. An exponential approximation for the reference cavity
function 35 (L) is derived when the associating species are of the same size and the bonding is
spherically symmetric. Expressions for the changes in the thermodynamic functions due to
association are obtained analytically in terms of the degree of association and the reference
cavity functions. The magnitude of the degree of association, calculated from the exponential
approximation for y% (L), and its effect on the thermodynamic properties are different from
what was previously observed using the hypernetted chain (HNC) approximation. The
thermodynamics of weak 1-1 electrolytes are discussed using the new method and a
comparison is made between the new and old methods for 2-2 electrolytes.

I. INTRODUCTION

In recent years there has been renewed interest in the
statistical mechanics of chemically reacting systems; for ex-
ample, chemical association in ionic systems so characteris-
tic of weak electrolytes. Association due to chemical bond-
ing was studied many years ago by Boltzmann' and is
usually introduced through a strong short range attraction
between the reactants as exemplified by the work of Ander-
sen’ and Héye and Olaussen.? The limited range of this inter-
action, along with the extreme repulsion between overlap-
ping particles, leads to the cancellation of a large number of
diagrams in the cluster expansion of the distribution func-
tion for the associating species, providing simple expressions
for the degree of association and the association constant.
More recently, association has also been treated by introduc-
ing a delta function interaction between hard spheres** and
between oppositely charged hard sphere ions®® while direc-
tional effects have also been considered in a series of papers
by Michael Wertheim.® In addition, solvent effects on the
association of weak electrolytes have been studied by us,'*!!
when it was found that a hard sphere solvent has a strong
packing effect which increases dimerization, while a dipolar
solvent has both packing and screening effects which com-
pete against each other to enhance or diminish the extent of
association. A crucial problem in all of these models is the
determination of the degree of association; this paper is con-
cerned with this question for sticky electrolytes and for
sticky hard spheres.
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Chemical association or bonding is mimicked in this
model by introducing a delta function interaction in the
Mayer function of the associating species A and B inside the
hard core '

Sap (M) = — 14+ LL(1 —8,5) 6(r— L)N12 (r<o) (l.la)

=exp[ — Bepep/(er)] —1 (r>o0) (1.1b)

Here L = o/n, with n greater than or equal to unity, is the
distance at which A and B can bond or stick together and o'is
the hard sphere diameter. The strength of the interaction
between an A—B pair in isolation is measured by the sticking
coefficient £, while e, and ey are the charges on these ions
(which are zero for uncharged hard spheres), € is the dielec-
tric constant of the solvent background, 8,5 is a Kronecker
delta and &(r — L) is a delta function. The presence of a
delta function in Eq. (1.1) leads to a pair correlation func-
tion for A and B with a delta function inside the hard core,

hyp(r)= —14+AL(1 —=8,5)8(r—L)/12 (r<o).
(1.2)

Here A is an association parameter which is related to § in

Eq. (1.1a) by
Vag (L) = A7, (1.3)

where 7 = 1/¢ and y, g () is the cavity function defined by
Yap(r) =8ap(7) exp[Bu,p(r)] (1.4)
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in which u,5(r) is the pair potential for A and B and
8agp () =1+ h,p (r) is the radial distribution function of
the reacting particles. The cavity function is the distribution
function for two “ghost” particles which do not interact with
each other directly but do so with the other particles; the
interaction between two cavities thus occurs only indirectly
through the surroundings. It plays a central role in our dis-
cussion and its importance in association reactions and
many other liquid state phenomena has been recognized ear-
lier by Chandler and Pratt'® and recently by Chandler and
Wolynes in studies of quantum processes (e.g., electron mo-
bility and solvation) in liquids.’

The association parameter A determines the degree of
association and the “association constant” K of the reaction

A +B-AB.

The thermodynamic properties of the corresponding unas-
sociated (reference) system are modified by dimerization in
proportion to the A and its determination is important. This
has most often been realized by employing the Percus-Ye-
vick (PY)? or the hypernetted chain (HNC)®’ approxima-
tions for the cavity functions y, (L) of the reactants A and
B at the “bonding” distance L.-As L becomes shorter, the
calculations invariably become much more involved as
might be learned from a cursory examination of Refs. 6 and 7
(or 5). Moreover it is not entirely clear that liquid state
approximations (PY and HNC) are appropriate for associ-
ation reactions or are even consistent with the law of mass
action.

The association “constant” K for the reaction can be
expressed as

K=pap/(paps) =a/[po(1 —a)?], (1.5)

where a is the degree of the association, p, is the density of
either A or B and the total density is 2p,. K is strictly a
constant only for ideal systems when Eq. (1.5) is known as
the law of mass action. The density or concentration of the
associated AB pairs

Pap =P S5F gap(P)anP dr=mlpiL3/3 (1.6)
and the degree of the association
a=(N)=mAp,L*/3 =nA(L /o)>, (1.7)

where 77 = mp,0°/3. The definition of « is identical to the
mean number of ion pairs (N ) defined in our earlier pa-
pers.5® Substituting Egs. (1.6) and (1.7) into Eq. (1.5)
leads to

K=mAL%/[3(1 —a)?].

In the absence of a third component (e.g., a discrete sol-
vent), as the densities of A and B p,— 0, the cavity function
Vap (L) > 1,50 that A 1/7, hag (r) = fap (r), and
K—-K,=wL?/3r. (1.9)
Dividing Eq. (1.8) by K, and using Eq. (1.3), provides a
relationship between the association constants at a finite
concentration and at infinite dilution
K/Ky=A1/(1—a)=y,s(L)/(1—a)®.  (1.10)
This expression was derived recently by Stell and Zhou'?

who pointed out that it implies that p,5(L)—1 like
(1 — a)? when the density of the reacting species tends to

(1.8)
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zero with the stickiness remaining finite. It is a consequence
of the law of mass action, but its derivation from the density
expansion of the cavity function for reacting molecules has
not been discussed before. We consider this problem as well.

When a=0 (no association), y.g(L) =35, (L)
which is the cavity function of the corresponding reference
system in which the stickiness is absent. In the absence of a
discrete solvent, 35 (L) — 1 as the densities of A and B tend
to zero. Stell and Zhou'? suggested the interpolation formula

Yap(L) = (1 —a)’yap (L) (1.11)
for the cavity function y, (L) which implies that
K/Ky=y3s(L) (1.12)

in which the degree of association is absent. According to
this relation the ratio of the two association constants at
finite and zero concentrations of A and B is completely de-
termined by the cavity function in the absence of bonding.
However, when the bonding is strong (or when the solute
packing is great) one expects a-» 1 making the association
constant K [see Eq. (1.10)] infinite even when K is finite.
This saturation limit has been discussed by us in detail in a
series of papers where we consider the ions pairing up to
form extended dipoles.'**

In the following pages we discuss a simple approxima-
tion for the cavity function y, 5 (L) which is consistent with
all of these limiting conditions and determines « as the solu-
tion to a quadratic equation. The paper is organized as fol-
lows: in Sec. I, we obtain an expression for the cavity func-
tion for the reactants from its cluster expansion which shows
explicitly that for L <0/2 y,5 (L) — (1 — a)? as p,—0 for
atoms of the same size which suggests a simple approxima-
tion for  in terms of the cavity function y%; (L) for the
reference system obtained by turning off the stickiness. Ap-
plications to acetic acid and monochloroacetic acid are con-
sidered, assuming a similar relation applies to the dimeriza-
tion of atoms or ions of different size; Sec. III extends the
discussion to association in the presence of a discrete solvent.
An exponential type of approximation for the cavity func-
tions of the reference system is considered in Sec. IV, while
the modification of the thermodynamic properties due to
dimerization are discussed in Sec. V, followed by a discus-
sion of our results in Sec. V1.

Il. THE CAVITY FUNCTION AND THE QUADRATIC
EQUATION FOR THE DEGREE OF ASSOCIATION

The main difficulty with the use of liquid state approxi-
mations (e.g., HNC or PY) to determine the cavity function
Yap (L) is that they ignore the bridge diagrams which inevi-
tably lead to expressions for the association constant that are
inconsistent with the limiting form of y ., (L). In view of this
it seems important to devise a simple but accurate approxi-
mation for the cavity function which takes into account the
dominant contributions of these diagrams.

The cluster expansion for the cavity function y, 5 (L)
can be expressed as sum of graphs:

Yap (L) =1+ sum of all topologically distinct irredu-
cible graphs on two white circles labeled A and B, one or
more black p, and py circles with at most one f, , ; fog, OF
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fap bond between each pair of circles but no bond between
the pair of white circles. 2.1)

The white circles are root points and the black circles are
field points representing either A or B. It follows from the
definition of the Mayer function given in Eq. (1.1) that
fap () can be separated into two parts: a reference part
f%s (7), which is the corresponding Mayer function when
the stickiness is turned off, and the remainder

fo(r) = ¢L8(r — L)/12.

fas (N =f2s(" +(n). (2.2)
Substituting Eq. (2.2) into Eq. (2.1), we have

Yas (L) =)yan(L) + a8 (L), (2.3)

where 2 p (L) is the cavity function for the reference system
in the absence of association and 4 ; (L) is the change in this
function due to association. Each diagram in the f~bond ex-
pansion of y55 (L) contains at least one f° bond derived
from the f, 5 (r) bonds present in the expansion of y,g (L).
Since there is nobonding among the A’s or B’s alone but only
between an A and a B, we see that

Saa (N =faa () =fa(r) (r<0), (2.4)
where, to simplify the notation and graphical representation,
we have assumed that A and B are of the same size. Repre-
senting these bonds by a dark line (@®) and f%(7) by a
wavy line (gv@) we see that the density expansion for
y55 (L) in the range 7 < o can be represented by

?
ﬁ,
:Zf
:::f
X!

+§4Nm.+41>4 ;mﬁzf:’tﬁsé“e

(2.5)

Note that our black circles are labeled and the factor in front
of each graph is the number of acceptable graphs with the
same value after permuting the labels and the bonds. Accep-
tability here means that there may be bonding only between
an A and a B but not between two A’s or two B’s. There is
also no direct bonding between the root points (white cir-
cles) A and B. In addition, since each f3; (r) bond will
contribute a factor — 1 for 7 inside the hard core, there are
no diagrams with two delta bonds in series when L<o/2
because for every such diagram there is another one with a
£ () bond in parallel across the end points which exactly
cancels the first i.e.,

(2.6)

A 8 A A B A

This property is exploited in the cancellation theorem for
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hydrogen bonding clusters discussed by Andersen? and for-
mulated explicitly in the form given in Eq. (2.6) by Hdye
and Olaussen.® In addition, when L<o/2, the triangle in-
equality ensures that some of the diagrams in Eq. (2.5) with
an even number of /% 5 bonds will be cancelled by those with
an odd number of 9 bonds. These are shown as sets of
diagrams blocked out in Eq. (2.5); the sum of the diagrams
in each block adding up to zero. The leading term in the A
bond expansion is an fbond, and we now use a renormalized
expansion in terms of # bonds rather than f bonds in the
remaining diagrams. The graphs left in Eq. (2.5) can thenbe
written as

A AR g8
Yagtl) = 2 h + M + f(na)
A B A B

where the dark line and the wavy line are 295 (7) and 4°
bonds, respectively, which are analogous to the 3 (7) bond
and f° bond defined in Eq. (2.2). The function f(7a) con-
tains all the remaining terms in Eq. (2.5) which have a com-
mon factor 7, where @ comes from the presence of at least
one 4 °bond and 7 from an h % (7) bond. Atlow density A is
large,®” and it follows from Eq. (1.7) that  is much greater
than 7. Therefore we can neglect f(77a) in comparison to a?
at low reactant densities; a similar situation arises in Ander-
sen’s study of the hydrogen bonded fluid.2 We now evaluate
the first two diagrams in Eq. (2.7); a direct integration gives

A
A - -npALYM3 =-a

2.7

(2.8)
A B8
A B8
H = (npAL3/3 )%= o? (2.9)
A B8

Substituting Eqs. (2.8) and (2.9) in Eq. (2.7), we have
Ve (L) = —2a+a*+ - (L<o/2) (2.10)
from which it follows that Eq. (2.3) can be written as

Yap(L) = (1 —a)®+ [y (L) —1]. (2.11)
This is our expression for the cavity function in the absence
of a discrete solvent which is different from the assumption
of Eq. (1.11). Using Eq. (2.11) in Eq. (1.10) we find, in-
stead of Eq. (1.12), that

K/Ky=1+ [yig(L) —1]/(1 —a)> (2.12)

When the reactant density goes to zero, 35 (L) — 1, K- K,
provided a# 1. When a = 1, K /K, = « and we have satu-
ration.

To calculate the association constant KX from K, we
need the degree of association and the cavity function
s (L) for the reference system. To determine a, combine
Egs. (1.7), (1.9), and (1.10) with Eq. (2.11) when we have

Ws (L) = A1 =a/(pKy)
=(1-a)+ [Ms(L) 1]
which leads to a quadratic equation

a@’poKy — a(1 + 2p.K,)

(2.13)
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+¥an (L) poKoy =0 (2.14)
for a. The solution to Eq. (2.14) is
a=1+{1—[(1+20K,)* — 45 (L)
X (peK0)21"2}/ (2poKo). (2.15)

In the limit py—0, -0 if K| is finite, while in the infinite
stickiness limit, when 7-0, K,—»«, and a—1 as
¥ag (L) — 1, which implies that, if the binding force between
A and B s very strong, the degree of association will tend to
one even at zero density. A convenient feature of the qua-
dratic equation is that to solve for @, we only need to know
K, (determined by rand L) and the cavity function 5 5 (L).

Equation (2.14) and its solution (2.15) are the central
results of this section derived here for association between
two species of the same size. Equation (2.15) provides an
explicit relationship between the reference cavity functions
and the degree of association @ when the association con-
stant K, is known

Yap (L) = a[1 + 20Ko(1 — @) 1/poK,. (2.16)
It should also be applicable to association between atoms or
ions whose sizes are different provided polymerization does
not occur, i.e., only dimers are formed. In our model the
sticky interaction is spherically symmetric, and its extension
to atoms or ions of different size does not preclude the associ-
ation of a large atom with more than one of the smaller
atoms; although bonding of more than one large atom witha
smaller atom is sterically hindered when L is smaller than
the radius of the larger atom.

However, association can be limited to dimerization if
we have directional bonding between A and B within a given
solid angle ) subtended by the larger of the species B. The
angle ) must be small enough to enable only one of the other
A atoms or ions to bind at a distance L; steric repulsion
between the A atoms prevents further polymerization. This
model is similar to the one considered by Boltzmann® who
imagined “sensitive regions” for bonding on the surface of
each of the species. Instead of Eq. (1.1a) we will have

fan(P) = — 1+ ELQ(1 = 8,5) 8(w — Q)
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with a corresponding change in the equations for A5 (7).
Introducing this in Egs. (1.2) and (1.6) we find that X and
K, are reduced by a factor /4 while the ratio K /K, is still
given by Eq. (1.10). The cavity function of the reference
system now depends on L and Q. Without further proof, we
assume that Egs. (2.13) with {5 (L), 335 (L,0)} re-
placing {y.s (L), 35 (L)} applies to this model system as
well. It follows that Eqgs. (2.14) to (2.16) also apply with the
substitution of 33 (L,0) for y%5 (L).

The calculation of the reference cavity function
s (L,Q) from the Hamiltonian of this system with direc-
tional bonding would be very involved. Hence, we take a
different point of view and use Eq. (2.16) to calculate
¥3p (L,02) from the experimentally determined degree of
dissociation of a weak electrolyte. The examples we consider
are acetic acid and monochloroacetic acid in aqueous solu-
tion at 25 °C; the degrees of dissociation (our 1 — @) have
been determined through conductance measurements by
MacInnes and Shedlovsky'® and by Shedlovsky, Brown, and
Maclnnes.?® Each of these acids dissociates into ions of dif-
ferent size and the dissociation constants at this temperature
are 1.75 X 10° and 1.49 X 10° M/, respectively. To illustrate
the method (and simplify the calculations ) we assume a con-
tinuum solvent; the association constants X, in Eqgs. (2.15)
and (2.16) are then simply the inverse of the dissociation
constants. Using the data tabulated in their papers we calcu-
late the cavity functions of the reference systems from Eq.
(2.16); the results are shown in Fig. 1. The differences
between the curves are probably due to the differences
between the sizes (and the charge distributions) of the ace-
tate and chloroacetate ions; in either case we expect that the
H ions are bonded very close to the surface of the cation so
that the bonding distance L is close to the radius of the ca-
tion. The reference system for a weak acid has an interesting
physical interpretation; it is the corresponding strong acid
with the same molecular structure in the same solvent ob-
tained by turning off the short ranged chemical interaction
[represented in this model by Eq. (2.17)] between the posi-
tive hydrogen ion and anion! The reference cavity function
for a weak acid is thus the cavity function for the correspond-
ing strong acid in which chemical association is absent.

monochloroacetic acid FIG. 1. The reference cav-

25¢ ity functions ¥ 5 (L,0) for
acetic acid and monochlor-
oacetic acid as a function of
the concentration at 25°C
calculated from Eq. (2.16)
and the experimentally de-
termined degree of disso-
ciation.

X&(r—L)/12 (r<o) (2.17)
100
100.0
g
] X
g ws S
= =)
a “
o 998 Acetic acid N
) 25C
N o
9.7
996 , § 97
"o 10 20 30 0
¢x10,000 mole/l

10 20 30

¢x10,000 mole/l
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lil. SOLVENT PACKING EFFECTS ON ASSOCIATION
REACTIONS

In this section we show that the effect of a solvent on an
association reaction can be treated (at not too high a solvent
density) by rescaling the cavity function for the reference
system. This leads to a quadratic equation for the degree of
association a which is of the same form as the equation de-
rived in the previous section.

In the presence of a discrete molecular solvent, the cav-
ity function y 5 (L) for A and B in the solution (s) may be
expressed in the form

Yas (L) =yap (L) Yap (L) + yap~(L), 3.1

where yi5 (L) is the cavity function for two solute particles
A and B in the presence of other solute particles only at a
density p,, while y,5 (L) is the corresponding cavity func-
tion in a pure solvent medium i.e., when the solute density is
zero. In Eq. (3.1) the first term corresponds to the product’®
of these cavity functions and the second term y3"°(L) is the
remainder which cannot be factorized in this way. The su-
perscripts s, #, and v in these functions imply that we are
dealing with a solution (s), solute (1), or solvent (v) medi-
um in which the solute cavity particles are embedded. Note
that as the solute density tends to zero, yyg (L) —»yip (L)
and hence A #1/7 in this limit.

Separating out the terms with delta function bonds in
the cavity function [cf. Eq. (2.3) ], we have

Vap (L) =y25 (L) +y%5 (L), (3.2)

where y%5 (L) is the cavity function for the reference solu-
tion in which there is no stickiness between A and B. Com-
bining Eqs. (3.2) and (3.1), we find

w5 (L) =35 (L) — yan (L) Y25 (L) +yas (L) (3.3)
in which we have used Eq. (2.3) (adding a superscript u to
the solute cavity function) and

Yas (L) =23 (L) — yas (L) y25 (L). (34)
Substituting Eqs. (3.3) and (2.11) into Eq. (3.1), we have,
when L <0/2,

Yas (L) = yap (D){(1 —a)* + 325 (L) /¥as (L)] — 1}

+ yag (L). (3.5)

In the cluster expansion of y4p (L), no product diagrams of
Yap (L) and y%% (L) occur; also at least one delta function
bond and one solvent field point is present in each diagram.
An explicit expression of y3; (L) to first order in the solvent
density is

op—qv B4V |op—gv  og_pv |
) 1
yABA(._)-:zE L+2N:+§2§I+2m :
LA B__A By LA B A B |
A v v
Y O (3.6)

where the label v implies that the field point is a solvent and
the diagrams in each block cancel each other when L<o/2.
Also, the diagrams left in Eq. (3.6) will partly be cancelled.
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When the solvent density is not too high we can neglect
Yas (L). We assume that this is so. Dividing by y4 5 (L), and
using Eq. (1.7), one finds

Yap (L) = A7 =a/(poK )

=(1—-a)+)(L) -1, (3.7

where yi5 (L), 7, K {, and yX5 (L) are defined by
Yas (L) =yis (L)/yap (L), (3.8)
Y (L) = y25 (L) /yan (L), (3.9)
7 =17/yas (L), (3.10)
K=Ky (L). (3.11)

Equation (3.7) is the rescaled form of Eq. (2.13), and leads
to a quadratic equation for « similar to Eq. (2.14):

@’poK § — (1 + 200K §)
+ s (L) poK § = 0. (3.12)

The solution of Eq. (3.12) is the same as Eq. (2.15) except
that y 5 (L) and K, are replaced by the rescaled quantities
¥%s (L) and X §. It follows from Eq. (3.11) that the limiting
value of the association constant depends on the density and
the nature of the solvent. When the solvent density vanishes,
Yap (L)1, Eq. (3.12) reduces to Eq. (2.14). Equation
(3.11) provides the theoretical basis for calculating solvent
medium effects on the associating constant of a weak electro-
lyte. Taking the logarithm of this equation

InKj§=1nK,+Inyig (L), (3.13)

where the last term is the excess chemical potential (divided
by kT) of the undissociated AB molecule in the pure solvent
which is related to the dielectric constant and other proper-
ties of the solvent. We stress again that our discussion in this
section applies only when L<0/2 and at not too high densi-
ties of the solute and solvent.

IV. THEORETICAL CALCULATION OF THE CAVITY
FUNCTIONS FOR REFERENCE SYSTEMS IN THE
STICKY ELECTROLYTE MODEL

From the discussion above it is apparent that the degree
of association « and the equilibrium properties are deter-
mined by K, (or K ;) and the cavity functions % (L) and
Yas (L); the second cavity function is needed only in the
treatment of association reactions in a discrete solvent. Since
stickiness or bonding is absent in these reference and solvent
systems, liquid state approximations can be employed to cal-
culate the cavity functions. In this section we discuss one
such approximation for the cavity function when the asso-
ciating species A and B are of the same size.

An exponential type of approximation for the cavity
function of ions in a hard sphere solvent of the same diameter
follows from our earlier analytic work on the HNC/MS ap-
proximation for sticky electrolytes'® by setting the sticky
parameter A equal to zero

Yap(L) =exp [ — 1 —¢s(L) —cp(L)] (L<o) (4.1)
with
es(L) =A, 4+ A,(L /o) + A, (L /0)® (L<o) (4.2)
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A= — (14 299)%/(1 — 55)* (4.3a)
Ay = 610(1 + 110/2)%/ (1 — 10)* (4.3b)
Ay =10(1 + 276)%/[2(1 — 75)*] (4.3c)
To=7n+17, (4.3d)
and

¢p(L) = (é¥/€kTo) [2B— B*(L /o)] (r<0o) (4.4)
B=[1+xo0— (1+2x3)"?)/ko (4.5)
K> = [4ne’/(ekD)] ¥ p, 2. (4.6)

Here cg and ¢, are the sum and difference direct correlation
functions, 7 and #, are the reduced densities of solute and
solvent, respectively (7= mpe0°/3 and 7, = mp,0°/6,
where p, is the solvent density) and x is the inverse Debye
length. On setting 7, equal to zero we have the cavity func-
tion for the oppositely charged ions in a continuum solvent;
setting, in addition, the charges equal to zero provides the
cavity function of the hard sphere reference system. A more
accurate expression of the cavity function for a hard sphere
system has been given by Henderson and Grundke!® but we
find it more convenient to use the results obtained from Egs.
(4.1)-(4.6) simply by switching off the charge and setting
the solvent density equal to zero; the difference between this
and the Henderson and Grundke approximation is very
small at the solute and solvent densities considered in this
study. Using this approximation for the cavity function of
the reference system, the degree of association a can be cal-
culated from Eqs. (2.14) or (3.12); while A4 and the associ-
ation constant K are determined using Eqs. (1.7) and
(1.10), respectively.

V. THERMODYNAMIC PROPERTIES FOR WEAK
ELECTROLYTES IN THE MEAN SPHERICAL
APPROXIMATION FOR THE SEM

The excess energy E°* of a weak electrolyte depends on
a and is given by®’

BE*/N=(dInr/dInB)a/2 — xH'/2 (5.1)

where Rasaiah and Lee'® have shown that, in the mean
spherical (MS) approximation for associating ions of equal
size, H' = H /o has the form

H'(MSA) = [a, + a,x — (a}
+ 2a,%)""?1/ (24 a,n) (5.2)

for any integral n = o/L, where x = ko and g, (i = 1 to 4)
are functions of the reduced ion concentration 7, the associ-
ation parameter A and n. When 4 = 0 (i.e., the stickiness is
removed and the degree of association « is zero), all of the a;
coeflicients become unity (a; = 1) and the energy of the
RPM celectrolyte in the MSA is recovered. For 4 #0 we
have!*>!* for
(a)yn=2
a=2—c¢ a=2(—3+4+3c+s)/v

@G =2(c*+c—2+4+2s=cs)/v; a,=4(1—c)/v* (53)

where v = (94 /8), ¢ = cos(v/2) and s = sin(v/2), while
for(b)n=3
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a;=2(V2—-5)v+6(2v2—2s—V2c);
a,=(—3vV2+45—v2)v/3+ (5v2 -85 —Vv2¢)
+6(—vV24+5+1v2c)/v,
a;=6(12 — 17v/25 + 3v/2¢cs — 4c + 125%)
+ 18( — 8 4+ 7v/2s — 5v/2cs5 + 8¢ — 25%) /v,
a,=B3V2—454+v2)34+2(—V24+254+1V2c)/v
+3vV2(1 — ) /W, (5.4)

where v = (94 /18), ¢ = cos(v'2v/3) and s =sin(v'2v/
3). The corresponding expressions for n = 4 and 5 are quite
lengthy and are given in reference 14.

The change (A) in the Helmholtz free energy due to
stickiness (or bonding) can be expressed as’

s
BAA/N= — (3/2) (L/3*) fy,m (L,£"dg’
0

= — (L1/20®) [A(1 —Iny,5(L)
+ Ssln pap (L, A")dA"] (5.5)

=a/2+ (1/2)In[yup (L) /¥p (L) ] +1

where N is the total number of solute particles and 7 is de-
fined by

I=[We@)—1] 5211 —a)?

+¥%6(L) —1]7'd(1 —a). (5.6a)
The integrand in Eq. (5.6) is the inverse of the cavity func-
tion which, using our exponential approximation for
¥as (L), is positive (see Figs. 2-4), but the integral depends
on whether y5 (L) is greater than or less than unity. We
find that for the two cases (a) y3p (L) > 1

I=y{tan"'[(1 —a)/y] —tan~'(1/9)} (5.6b)

20

sticky hard spheres -

05

1
cmol /1

FIG. 2. The cavity functions y,p (L) and )55 (L) for the sticky hard
spheres at L = ¢/2 and 6/3 in a continuum solvent plotted as a function of
the solute concentration. The connected lines are y,5 (L) and the dashed
lines 335 (L). yap (L) and y 5 (L) were calculated from Eqgs. (2.11) and
(4.1) using Eq. (2.15) for a. The sticky parameter and the molecular diam-
eterare 7=0.02, 0 =4.2 A.

J. Chem. Phys., Vol. 92, No. 12, 15 June 1990
Downloaded 17 Jul 2004 to 130.111.64.68. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



7560

sticky 1-1 electrolytes

0.0 )
C (Mol/L)

FIG. 3. The cavity functions y,, 5 (L) and 335 (L) for the sticky electrolytes
at different L in a continuum solvent plotted as a function of the electrolyte
concentration. The connected lines are y,; (L) and the dashed lines

Yap (L). The temperature and dielectric constant are t=25°C and

£ = 78.358, the other parameters are 7 = 0.02 and o = 4.2 A. See caption of
Fig. 2 for other details of calculations.

(b) y3p (L) <1
= —12yy{ld—a—-A+n)/
[A—a+(1 -1} (5.6¢)
with
y= (1= @) (5.6d)

Inderiving Egs. (5.5) and (5.6), we have used Eq. (3.7) and
the definitions in Egs. (3.8) and (3.9). As expected, AA—0
when the stickiness is turned off i.e., when a — 0. The contin-
uum solvent limit is obtained by setting the solvent density
equal to zero when y4p = y.p (L) and y35 (L) = 355 (L).
As discussed by us in an earlier paper,'® the osmotic

coefficient of the SEM, in the McMillan-Mayer system, can
be separated into three parts

sticky 1-1 electrolytes ,

0.0 T
0 1 2

cmol /1

FIG. 4. The rescaled cavity functions y, 5 (L) and y5g (L) for the sticky
electrolytes at different L in a discrete solvent (7, = 0.1) plotted as a func-
tion of the electrolyte concentration. The connected lines are y, 5 (L) and

the dashed lines 3, (L). yip (L) and y3;; (L) were calculated from Egs.
(3.7), (3.9), and (4.1) using the analog of Eq. (2.15) for a. The model
parameters are the same as in Fig. 3.
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10

0.5

0.0+

cmol /1

FIG. 5. The degree of association & for different L plotted as a function of
the concentration of sticky hard spheres. The full lines are the results in a
continuum solvent and the dashed lines are those in a discrete solvent with
7, = 0.1. For the model parameters and other details, see caption of Fig. 2.

¢ =1 + ¢hs.ex + ¢el,ex + ¢st,ex’ (57)
where ¢"* and ¢ are given as'®
PP = (3 — 1)/ (1 —70)> — (3 — 27— 47,
+ 101, )/ [ (1 = 176)*(1 — 7,)?] (5.8)
= [243x— (2 +x)
X (14 2x)"2)/729 (5.9)
and the sticky part ¢*= is found from
st,ex (4 st,ex
wex o1 (£ )d. 5.10
=T L ( kT )% .10)

The excess chemical potential 4**** is obtained by differenti-
ating AA in Eq. (5.5) with respect to N

#St'cx/kT=BAA /N+ 7

2@‘8_‘1@. (5.11)

Substituting this in Eq. (5.10) and carrying out the integra-
tion we have

04

sticky 1-1 electrolytes on S

1=0.02 .25C

FIG. 6. The degree of association for different L plotted as a function of the
electrolyte concentration. The full lines are the results in a continuum sol-
vent and the dashed lines are those in a discrete solvent with 7, = 0.1. See
caption of Fig. 3 for the model parameters and other details.
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FIG. 7. The ratio K /K, for different L plotted as a function of the hard
sphere concentration. The full lines are the results in a continuum solvent
and the dashed lines are the results in a hard sphere solvent with , = 0.1.

The model parameters are the same as in Fig. 2.

I
’
i
sticky 1-1 electrolytes /’ o3 4
201 s /
- t=002 ,2sc Vil /
{1 /’ /
\ 4 4
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0.0 T
0 1 2
cmol /1

FIG. 8. Theratio K /K, for different L plotted as a function of the electrolyte
concentration. The full lines are the results in a continuum solvent and the
dashed lines are the results in a hard sphere solvent with 7, =0.1. The

model parameters are the same as in Fig. 3.

where I is given by Eq. (5.6b) for 35 (L) >1 and by Eq.
(5.6c) for y35(L) <1 and 7 is given by Eq. (3.10).

wex _ O(BAA/N
grox — OB aﬂ/ )
_ _ _ . 2 3 dys (L)/dn may be obtained from our approximation for
=a/2—a(l—a)/yws (L) + (7/2)(L /o) the cavity function of the reference system by differentiating
X(ﬂ) [1—2(1 — @) /yas (D] Egs. (3.9) and (4.1).
dn. dygn (L) ’
a5 (L) -—‘1—=}’°AB(L) [-41—43(L/0)
+ (9/2) [‘—] [1—U-a)?/ g
dn —A5(L/0)’ —cp(L)] (L<0)(5.14)
[P (L) pap (L)] +J (5.12)  where
with
— =22 2a(l—a) |/
dn dn ( “ —4(1 4+ 270)%/(1 — 70)°, (5.15a)
{nl7 +29(1 — a)(L /0)*1} (5.13a) A3 =3(4+8m+ 393)/[2(1 — 75)*]
and + 675(2 + 10)*/(1 — 7)>, (5.15b)
J=n9L Ay =2 +mA 172 (5.15¢)
on and
dy%s (L
= (1/2) [1%] (/%) —1]
+1/3%s (L) — (1 —a)/yap (D)} * 7
! sticky 1-1 electrolytes S
- D@ —1]) [a+7? -
(5.13b) % * S e

X (ﬁ) (L/0)*/yas (L)],
dn

TABLE I. The ratio of the association constants for sticky hard spheres
(7= 0.02) for L = 0/2 and 0/3 calculated using two different approxima-

tions for the cavity functions.

K/Ky(a/3) K/Ky(0/2) K/Ky(a/3)

cmol/l

¢ mol/1 K /Ky (0/2)
Eq. (2.11) for y,p (L) Eq. (1.11) for y,g (L)
0.100 1.026 '1.029 1.024 1.029
0.500 1.179 1.181 1.136 1.164
1.000 1.568 1.487 1.316 1.392
1.500 2.568 2.065 1.580 1.716
1.900 5.320 3.013 1.824 2.083

FIG. 9. Plots of the change in the Helmholtz-free energy due to stickiness
for different L vs the concentration of a 1-1 electrolyte—see Eq. (5.5). The

full lines are the results in a continuum solvent and the dashed lines are the
results in a hard sphere solvent 7, = 0.1. For the model parameters, see

caption of Fig. 3.
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0.8 sticky 1-1 electrolytes o2

0.0 v
0 1 2
cmol /1

FIG. 10. Plots of the excess internal energy of a sticky 1-1 electrolyte in a
continuum solvent for different L vs the electrolyte concentration. The
dashed line is for the restricted primitive model (RPM) in which stickiness
is absent. The other curves are calculated from Eq. (5.1) using Eq. (2.15)
for the degree of association and the MS approximation { Eq. (5.2) ] for the
electrical interactions. See caption of Fig. 3 for the model parameters.

cp (L) = (é¥/€kTo) [2B’ —2BB’(L /0)] (r<o0),
(5.16)
B'=[1—(1+2x)"Y2_—B]/29. (5.17)

Note when the solvent density goes to zero
[7,-0, )35 (L) —>¥ap (L) and y4g (L) >pap (L) ], the os-
motic coefficient given in Egs. (5.7)—-(5.17) reduces to that
in a continuum solvent.

VI. RESULTS AND DISCUSSION

The degree of association and the equilibrium properties
of associating systems depend critically on the cavity func-
tions y,p (L) and yip (L); our approximations for these
functions for sticky hard spheres and for sticky electrolytes
when the associating species are of the same size are plotted
against the solute concentration in Figs. 2 and 3 along with
the cavity functions y55 (L) and 325 (L) for the reference
systems. The parameter 7= 1/{, which determines the

14
sticky 1-1 electrolytes
APM

131 =002, 25¢
] o

12 L7}

1.1

1.0

09 T

0 1 2

cmol /1

FIG. 11. Plots of the osmotic coefficient of a sticky 1-1 electrolyte in a
continuum solvent for different L vs the solute concentration. See caption of
Fig. 3 for the model parameters and other details.
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FIG. 12. Plots of the sticky parameter A for a 2-2 electrolyte with L = 0/2
vs the solute concentration in a continuum solvent. The unconnected line is
the result of Ref. 6 using the HNC approximation, the connected line is the
result of our new method for determining the degree of association from Eq.
(2.15). Here t=25°C, z,= —2z5=2,€=78.358, r=6.15x10""
(6,=4000k) and 0 =42 A.

strength of the stickiness in the Mayer f bond for AB, is
assumed to be the same (7 = 0.02) in each of the systems to
make the analysis simpler. It is seen that the addition of an
attractive interaction (sticky or electrical) between the asso-
ciating species A and B decreases the cavity function thereby
reducing the probability that two “ghost” particles, which
constitute the cavities, can form at a distance Lo /2. This is
just the opposite of what is expected of the distribution func-
tions of real particles at L > . Thus, the reference cavity
function 55 (L) is always greater than y,p (L) for the
sticky system, and the cavity function for hard spheres
(whether sticky or free) is greater than the corresponding
cavity function for charged hard spheres. The rescaled cav-
ity functions yip (L) and p%g(L) [see Egs. (3.8) and
(3.9)], which are the relevant ones for association in a dis-

sticky 2-2 electrolytes

E/NKT

0 1‘ 2
CML)

FIG. 13. Plots of the excess energy vs the concentration of a sticky 2-2
electrolyte in a continuum solvent for L = ¢/2. The unconnected curve is
the HNC/MS result of reference 6; the connected curve is our new calcula-
tion [Eq. (5.1)] using Eq. (2.15) for the degree of association and the MS
approximation [see Egs. (5.2)] for the electrical interactions. See caption
of Fig. 12 for the model parameters.
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crete solvent, and plotted as a function of the electrolyte
concentration in Fig. 4; the solvent molecules here are hard
spheres at a reduced density 5, = 0.1. The figure shows that
the rescaled functions for sticky electrolytes behave similar-
ly to the cavity functions y, 5 (L) and 3% (L) (Fig. 3) in the
absence of a hard sphere solvent. Qualitatively the same be-
havior is also observed for sticky hard spheres in a hard
sphere solvent. A comparison of Fig. 1 and Fig. 3 shows that
the reference cavity functions calculated from the formula
(2.16) by using experimental data for weak acids are similar
to those calculated from the exponential approximation
(4.1) although the minima occur at much lower concentra-
tions for the weak acids. This may be due to the neglect of
size differences and directional bonding in the exponential
approximation.

In Figs. 5 and 6 we show our calculations of the degree
of association as a function of the solute concentration for
sticky hard spheres and sticky electrolytes respectively when
L = 0/2 and o/3 with 7 = 0.02. The corresponding associ-
ation constant ratios K /K are displayed in Figs. 7 and 8. As
expected a and K /K, increase with the solute concentration
and are further enhanced by the presence of a hard sphere
solvent which exerts a packing effect. We also see that a is
greater for L = 0/2 than for L = ¢/3 at a finite solution
concentration, while the order for K /K, is reversed for
sticky electrolytes at concentrations up to 2 molar both in
the presence and in the absence of a hard sphere solvent. The
same reversal is also observed for sticky hard spheres in a
hard sphere solvent at low concentrations—see Fig. 7. These
observations are related to the behavior of the cavity func-
tions. It follows from Eqgs. (1.3), (1.5), (1.7), and (1.10)
that

WL (27/8)y,p (0/2)

Qo3 "~ yas(o/3)

(K/Ky)opy (1 —,3)? pap(0/2) .
(K/Ko)ors  [(1=02)? yap(073)]

The larger degree of association at the larger separation (L)
is determined by the magnitude of the ratio of the two cavity
functions. The relative magnitude of the association con-
stants at the two separations, however, is determined by the
ratios of the cavity functions as well as the ratios of the
squares of the degrees of dissociation (1 — @) which also
depend on the cavity functions. It is seen that the approxima-
tions for the cavity functions enter critically into this calcu-
lation. Using the exponential type of approximation for the
cavity function of the reference system, we find
VYap(0/2) <yag(a/3) but (1 —a,,;;)?> (1 —a,, )% The
order of K /K, for sticky hard spheres we find is qualitatively
the same as the order found using the PY approximation for
the stickiness,’ but is just the opposite of what is obtained
using Eq. (1.11)—see Table I. Another interesting observa-
tion is that the association constant and the degree of associ-
ation are smaller for sticky electrolytes than for the corre-
sponding sticky hard spheres with the same sticking
coefficient 1/7. This can be explained in terms of our earlier
observation that the cavity function for L <o0/2 decreases
when an attractive interaction is introduced. The same effect
is observed in Stell and Zhou’s calculation of K /K,,.'?

(6.1)

(6.2)

The Helmholtz free energy, excess energy and osmotic
coefficient are displayed in Figs. 9, 10, and 11 for sticky 1-1
electrolytes. As expected, the addition of a hard sphere sol-
vent makes the free energy due to association more negative.
The excess energy and the osmotic coefficients of electro-
lytes in the absence of a discrete molecular solvent are shown
in Figs. 10 and 11. The order of these functions for electro-
lytes with stickiness at L = 0/2 and /3 are qualitatively the
same as what was found in our earlier work’ even though the
charges and the sticking coefficients are very different.

To compare our new method with the earlier results for
weak electrolytes using the HNC/MS approximation
(HNC for the stickiness and MS for the electrical interac-
tions), we use the same value for 7 (7 =6.15%X1077) to
calculate the association parameter A and the excess energy
for the 2-2 electrolytes in a continuum solvent (7, =0,
€ =78.358) at L = 0/2. From the results displayed in Figs.
12 and 13 it appears that 4 becomes smaller much sooner
with increase in concentration than in our earlier calcula-
tions using the HNC approximation for stickiness; the same
trend appears in the excess energy. The equilibrium constant
at this value of 7 is large (K,/0° = 2.12X10°), so that a
small uncertainty in the reference cavity function y%; (L)
will produce a large error in the degree of association « cal-
culated from Eq. (2.15). For this large K|,, our exponential
approximation for the cavity function predicts an « that de-
creases with the concentration for electrolytes while just the
opposite behavior is found for sticky hard spheres. This sug-
gests that the exponential approximation for electrolytes
may not be accurate enough to use in Eq. (2.15) when the
sticking coefficient § is large i.e., when K, is large. This can
be investigated by using integral equation approximations
for 3% and computer simulation which are beyond the
scope of this paper.
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