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4 theory of etectrostrlcnon which follows from stu&es ofd~polar ordering at an electnfied wall IS dlscussed In the qua- 
dratlc hypernetted cham npproxunatlon Bndge dragrams for the wall-particle correlation functions contrIbute sgmficant- 
ly to electrostnctlon even to lowest order m the electnc field The fomi of the constltuuve relation between the pohnza- 
tlon densny and the field m strong fields IS dacussed. 

I_ Introduction 

The ordermg of dipoles at a wall from whch an 
electnc field emerges has been studled m the mean 
spherlcal (MS) [l] and linearized hypernetted cham 

(LHNC) [2] approxlmatlons We report here that elec- 

trostnctlon appears as an added feature when the the- 

ory IS carried beyond the LHNC approxlmatlon for 
the wall-particle correlation functions, leadmg to a 
molecular theory of thn phenomenon m which graphi- 
cal analysis and Integral equatron approvrmatlons that 
are ublqultous m the theory of fluids may be exploit- 
ed. Of the iuerarchy of approxunatlons generated by 
the hypernetted chain equation (HNC), we find that 
the quadratic hypernetted chain (QHNC) approxlma- 
tlon 1s the first to predict electrostnction. The leadmg 
term in the relative change in density an mfimte dls- 

tame away from a flat waU IS of 6(E*), where E IS the 
magrutude of the local field. Appro?umations beyond 
the QHNC theory systematically generate terms of 
lugher order, so that the QHNC approxrmatlon also 
contams wltlun it the complete electrostrictlon term 
of O<E’) m the HNC approxlmatlon. 

All of the theories of electrostrrctron whch have 
their genesls m the HNC approxmatlon Ignore the 
bridge diagrams, but we fiid, by companng the QHNC 
theory with the thermodynamrcs of electrostrlctlon 
[3], that these diagrams must contribute sigruficantly 
even to lowest order m E Thrs leads us to beheve that 
they play an equally unportant role m deternurung the 
local density when the dipoles are closer to the wall. 

We report here the barest outhne of our molecular 
theory for an open system [4] UI which contrlbutlons 
from the QHNC approxlmatlon to 0(E2) and from 
the brrdge diagrams to the same order UI the etectrrc 
field and to lowest order in the density and the dipole 
moment are evaluated analytically. Our theory can al- 
so be extended to higher order m E but this wfi not 
be pursued here. The themodynamrc dlscusslon of 
Krrkwood and Oppenheun [3] however IS hmlted to 

derlvmg the electrostrlctlon term of O(E*), smce it IS 
based on a thermodynamic perturbation theory of 
first order m E2, that uses as reference-state Input the 
linear constitutive relation between the polarization 
density P(m) and the local electnc field E for a field- 
independent e, 
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P(m) = (E - 1) E(m)/477 (1) 

Further details of our work and extensions IO It 
~111 be presented elsewhere [A] but we remark tllat 
our study yields the constltutlve relation with the 
same value of E as that obtained from from relating E 
to the two-particle orlenta!lonal correlation funcclon 

In the absence of a field, and also prowdes a basis for 
determmmg non-lmenr terms m the clectnc field for 
the polarlzatlon densit) 

2. Electrostriction in JII open system 

WC employ the tcchnlqne discussed In refs [I _7_] to 
‘+leratc an elestnc field by takmg a rnlkture oidlpo- 
lar hard spheres to the zero-densltl hmlt of species 2 
%ltli an attendant increase III the radius R7 to infmltb , 

under the constraint that Its dipole moment ttt2 dlvld- 
cd by the cube of thr radius of the excluded volume 
R,, = R7 + R I IS n Lonstant Lo The electric field E7 
emcrglll~ tram tltc’ wall IS related to Et, by [ I,?] - 

E, = L,, (3 ‘OS~U, + 1 )‘I? h 2. (2) 

where e, IS a unit vector dependent upon 8, [’ ,2]. 
the angle which the wall dipole makes with the wall 
normal ri Note that C-, IS constant when the wall dl- 
pole orlentatlon e2 IS fi\ed The relatlonsfup between 
E, and the hla\well flcld E m the fluid 1s of the form 

E = ]3/( 2~ + I)] E, + terms non-lmear :n E, (3) 

I lrrc the non-lmcar terms arc of magnitude const EZ 
+ when 0, - - 0, and E IS the dlelectnc constant of 
the fluid at zero field In the notation of ref [2], the 
wall-particle correlation function has the lnvdrldnt 
e\p3nslon 

+I&:) A(?, I) + , C-F) 

where A(?, 1) =s^z*S, and D(2,l) = 9,.(3riri - U) -s^l 
In which 5, and s^’ are unit vectors m the dlrectlons of 
the wall dipole and fluld dipole respectively, = 1s the 
distance of a fhud dipole (of onentatlon RI) from the 
wall, and U IS the urut tensor In this wall hmlt, R, 

--*-, 

f&j (2) = I;$(:) + 3K*1, (3 

190 

where I;?‘(z) 1s short-ranged and K2, IS a constant re- 
lated to the electric field E, (see section 3) Hence 

1u-n -D II ?, (z) = 3 K,, (6) =-..%a 

The coefflclents /I?‘(Z) and those beyond It m (4) are 
short-ranged The ongm of electrostnctlon In our theo- 
ry IS the couphng that can evlst between it$ (z) and 
hsl (2)). tlus feedback begms with the QHNC approx- 
imation 

We define the electrostrlctlon effect K,, as the rela- 
tive change in density of the bulk fhnd when the dec- 
tnc field IS swltched on. so that 

h-, = APIP: = f& (“. El). (7) 

where 

/I=;‘(:, E2) = CP1/l&x E,.R,) dR, (8) 

fl = 4n for dlpolar hard spheres and py IS the density 
of the bulk fluld when E, = 0 If A’, 1s the correspond- 
ing asymptotic hmlt of the angularly averaged direct 
correlation function cz’(z, Ez $2, ), we find [4] that, 
In the absence of molecular polanzabll~t~ 

K, = Arc/Q. (9) 

where Q IS the Inverse compresslblhty of rhe fluid, 

Q = 1 - ~&~‘)j-ql(r,S2,,fi,) dR, dR, dr (10) 

and c” (I, R, , S2,) IS the direct correlation function 
of the bulh flud The thermodynamic theory of elec- 
trostnctlon [3] for an open system gives K,, toO(E2)as 

K,S’) = (~18~) (ae/a& E’IQ, (11) 

where fi = l/kT, k IS Boltzmann’s constant, T 1s the 
absolute temperature and the superscript (2) means 
the term of 0(E2) 

3. The QHNC approximation for electrostriction 

By consldenng the asymptotic hmlt of cg(z) m the 
mvanant expansion for the waU-particle direct corre- 
latlon function c2’(z, E2_R1) we find [4] that K2’ IS 
related to E7 in the QHNC approxuratlon by 
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@ZlE2/(3 COS*82 + 1)1/2 = K21[2Q+(:!K&R&) 

+ Q_(- K,,P, 11 OR3 ) - 3K/,/(l + K,,)], (12) 

where the Q,( ) functrons are defied m ref [2], 
and the constant K,, IS related quite generally (1 e. not 
Just m the QHNC theory) to the fluId dlpole moment 

r?zl by [4-61 

3-v = Q+W,,P:R:,) - Q- (- K,,+:, )> (13) 

where y = 4nrz:pyfl/9. The drelectrrc constant E of 
the flurd IS also quote generally given by [6] 

e = Q+OK,,&+IQA- K,,L@:,) (14) 

We also find from the z - 00 hmrt of the QHNC ap- 
pro,umatron for czl (z, E, , R, ) that 

K(2) =$ Ar2 
c 2t(3 cos2e2 + 1) (1% 

and on usmg (2), (3). (9) and (I?)-( 14) we have 

A-i”’ = (p/247rpyy) (E - I)2 E”/Q, (16) 

where the superscript (2) means agam the term of 

O(E2) Note that m (16) h, r(2) IS Independent of the 
mchnatron 02 of the wall dipole Consrstency wrth the 
thermodynamrc theory (11) demands that 

py ae/apy =(E - #/3y (17) 

Thrs relatron IS Indeed satisfied by the srmple Debye 
equatton (E - l)/(e + 2) =y, but the more exact ex- 
pressron [7,8] (for arbdraryy and py --, 0) 

(E - l)/(E + 2) =y - g y3 + (18) 

Introduces a drscrepancy of O(y2) m (17). Smce hrgher 
order approxrmatrons derrved from the HNC equation 
do not produce additional contnbutrons to KI, of 
6(E2), the apparent mconsrstency hes m rgnormg the 
brrdge diagrams. 

4. Bridge diagrams of 0(E2) 

The bndge diagram of 6(E2) and to lowest order 
m the fluid densrty can be represented graphically, 
when z + c-, by 

(19) 

where o- - - -0 E 3K2,0(2, I). and 
2 -4 I 

IS the three-partrcle direct correlatron function c3(X,, 
X3,X,) for the fluid wrth X, z(r;, a,) 8*(2,1) con- 
trabutes to the wail-partrcle direct correlatton func- 
tion In (19) the open crrcle 2 IS the wall dipole root 
point, the half black ctrcle @ srgrufies angular mtegra- 
tron over the orrentatrons of the bulk fluid dipole 1 
and the black crrcles (field points) represent spatral 
and angular mtegratrons of fluid dipoles To evaluate 
(19) to lowest order in py and ml we use the low-den- 
srty lrmrt m terms of Mayer f functions 

c3(yt,X3,X4)~f(Xl.X3) fW,,X,) f&,X,) 

(20) 
and retam only the tz = 1 term m the perturbation ex- 
pansron [8,9] 

AX,, X,) =I&,) 

for the Mayer f function, where f. (rII) 1s the corre- 
sponding Mayer function for the reference hard-sphere 
system The bridge dragram IS now evaluated analytr- 
tally usrng Hankel transforms and we find eventually 
that when z + m, 

~(2)*(m) 2 - r& (E - 1)2 &E2/np’2, (22) 

m wtuch the contrlbutlon from the three-particle cor- 
relation function appears as the thud vrrral coefficrent 
for hard spheres! Adding this to (16), after usmg (9), 
we have 

_ s(E -1)2& E’ 

128np(: 1 Q’ (23) 

where = emphasrzes that our calculation of the bndge 

diagram of 6(E2) 1s correct only to lowest order III 
pp and ml. Thrs 1s sufficient however to test the mo- 
IecuIar theory against thermodynamrcs usmg (18) for 
the dielectric constant. Instead of (17) we now need 

& ada& = (E - 1)2/3~~ - & (E -i)*y, (24) 

which IS consWent with (18) to 6Q2). We have thus 
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shown that the bridge diagrams make srgniflcaf,t con- 
tributions to the density when : -+-. and It appears 
Lkely that they affect the density profiles also when 
the dipoles are closer to tne wall Theoretical studies 

of the ordenng of dipoles and sons at a wall that 
appeared so far Ignore these bridge dlag:ams 

have 

5. The polarization density P(-, E2) in an open 

system 

From the defimtion ofP(:, E2) In the grand enscm- 
ble [6] we have 

In our dtscusslon E2 IS Independent of z [see (2)] 
Usmg the Invariant expansion for 112L(-_.E2. tit), we 
find, after doing the necessary angular mtcgratlons, 
that 

P(=. El) = M&2,(3 cos20”j + l)l’? P,, (26) 

wluch is tndependent of any appro\lmatton for the 
wall-parttcle correfatlon functton’ Entploylng the 
QHNC appro\lmatlon for Kzf given tn (12). 

P(m.E2) = pp(:+?*;E2 [2~+(2fij,&+ 

1 

-1 

x 

If the non-hnear terms m (3) are neglected 

PQHNC(wvE) = [(f - 1)/45r1E 

x i-I- C P (E E’ 
245rpo,v2 35 + 1 Q I + O(ES) (30) 

I- 

A more complete calcularlon of this term !n the 
QHNC approxmmatton would require the determma- 
tlon of the coefficient of the E$ term m (3) when 02 
= 0 An exact calculation of the term of 6(E3) would 
require In addltlon that the contrlbutlons of the bridge 
alagrams to electrostrlctlon [see (X)] and to the rela- 

tlonslup between Ka and E2 De mcluded 
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