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A theory of electrostriction which follows from studtes of dipolar ordering at an electrified wall 1s discussed 1n the qua-
dratic hypernetted chamn appronimation Bnidge diagrams for the wall—particle correlation functions contribute significant-
1y to electrostniction even to lowest order 1n the electric field The form of the constitutive relation between the polanza-

tion density and the field in strong fields 1s discussed.

1. Introduction

The ordering of dipoles at a wall from which an
electric field emerges has been studied 1n the mean
spherical (MS) [1] and linearized hypernetted chain
{(LHNC) [2] approxmmations We report here that eiec-
trostriction appears as an added feature when the the-
ory 1s carnied beyond the LHNC approximation for
the wall—particle correlation functions, leading to a
molecular theory of this phenomenon in which graphi-
cal analysis and 1ntegral equation approximations that
are ubiquitous in the theory of fluids may be exploit-
ed. Of the hierarchy of approximations generated by
the hypernetted chain equation (HNC), we find that
the quadratic hypernetted chain (QHNC) approxima-
tion 1s the first to predict electrostriction. The leading
term in the relative change in density an infinire dis-
tance away from a flat wall 1s of O(Ez), where E 15 the
magnitude of the local field. Approximations beyond
the QHNC theory systematically generate terms of
higher order, so that the QHNC approximation also
contains within 1t the complete electrostriction term
of O{£2) 1n the HNC approximation.

All of the theories of electrostriction which have
their genesis in the HNC approximation ignore the
bridge diagrams, but we find, by companing the QHNC
theory with the thermodynamics of electrostriction
[3], that these diagrams must contribute significantly
even to lowest order in £ Thus leads us to believe that
they play an equally important role in determining the
local density when the dipoles are closer to the wall.

We report here the barest outline of our molecular
theory for an open system [4] in which contnibutions
from the QHNC approxmmation to O(E?) and from
the bridge diagrams to the same order 1n the electric
field and to lowest order in the density and the dipole
moment are evaluated analytically. Our theory can al-
so be extended to higher order in £ but this will not
be pursued here. The thermodynamic discussion of
Kirkwood and Oppenheim {3] however 1s mited to
deriving the electrostriction term of O(£2), since it 1s
based on a thermodynamic perturbation theory of
first order in £2, that uses as reference-state input the
linear constitutive relation between the polarization
density P(=) and the local electric field E for a field-
independent €,
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P(=)=(e — 1) E()/47 (H

Further details of our work and extensions to it
will be presented elsewhere [1] but we remark that
our study yields the constitutive relation with the
same value of € as that obtained from from relating €
to the two-particle orientational correlation function
in the absence of a field, and also provides a basis for
determining non-linear terms in the electric field for
the polaiization density

2. Electrostriction in an open system

We employ the techmique discussed in refs [1.2] to
generate an electric field by taking a misture of dipo-
lar hard spheres to the zero-density limit of species 2
with an attendant increase in the radius R, to infimty,
under the constraint that its dipole moment »i5 divid-
ed by the cube of the radius of the excluded volume
R, =R, + Ry 1sa constant Ly The electric field £,
emerging trom the wall 1s related to Ly by [1,2]

E. =033 s, + D2 e, )

where €5 15 a unit vecior dependent upon 6, [1,2].
the angle which the wall dipole makes with the wall
normdl n Note that £5 1s constant when the wall di-
pele onentation 85 is fixed The relationship between
E, and the Maxwell field £ 1n the fluid 1s of the form

=[3/(2€ +1)] E, + terms non-hnear :n £, (3)

Here the non-hinecar terms are of magnitude const E%
+ when 0, =0, and e s the dielectric constant of
the fluid at zero field In the notation of ref [2], the
wall—particle correlation function has the invariant
expansion

ha(z . E5. Q) =h3,(2) + 5 ) D2, D

+hy(H AR, D+, )

where A(2,1)=§,"$;and D(2,1) =§,-(3n1 — U) -5
m which s, and §; are unit vectors in the directions of
the wall dipole and fluid dipole respectively, = 1s the
distance of a fluid dipole (of orientation £2,) from the

wall, and U s the unt tensor In this wall imit, R,
- 0O

W) =A%) +3Ky, ®)
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where I;% (=) 1s short-ranged and K, 1s a constant re-
lated to the electric field E, (see section 3) Hence

m h D@ =3Ky (6)

The coefficients Iz%l (2) and those beyond 1t 1n (4) are
short-ranged The ongin of electrostriction in our theo-
ry is the coupling that can exist between hZDl (2) and
h3; (2), thus feedback begins with the QHNC approx-
imation

We define the electrostriction effect K, as the rela-
tive change 1n density of the bulk fluid when the elec-
tric field 1s switched on, so that

K;, =Ap/0 = 13 (. Ey). 7
where
Wz E9) = Q-1 [l (= E,. Q) dy (8)

Q = 4x for dipolar hard spheres and p(l) 1s the density
of the bulk fluid when E5 =0 If K 1s the correspond-
1ng asymptotic hrmit of the angularly averaged direct
correlation function 9y (=, E5 €2, ), we find [4] that,
in the absence of molecular polanzability

K =K./0O. )

where Q 1s the inverse compressibility of the fluid,
Q=1-(p0/9%) [cy(r. Q;,02;) dQ, dR; dr  (10)

and ¢y, S2, ,€25) 1s the direct correlation function
of the bulk flud The thermodynamic theory of elec-
trostriction [3] for an open system gives K, toO(E2) as

K = (B/8n) (3¢/30Y) E2/Q, an

where 8= 1/kT, k 1s Boltzmann’s constant, 7 1s the

absolute temperature and the superscript (2) means
the term of O(£?)

3. The QHNC approximation for electrostriction

By considening the asymptotic mit of cle () 1n the
invanant expansion for the wall—particle direct corre-
lation function ¢4 (z, E,.£2;) we find [4] that Ky 1s
related to £, in the QHNC approximation by
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B E5 /(3 cos26, + D2 =Ky 20, 2K 1p9R3))

+Q_(— K AR — 3K, 1L + K], (12)
where the Q.( ) functions are defined 1n ref [2],
and the constant K ) 1s related quite generally (1 . not
just in the QHNC theory) to the tluid dipole moment
m, by [4-6]
3y =0,QKyeIRY) - Q_(—KyelRY), (13)
where y = 41rrrz?l'p(1)B/9. The dielectric constant € of
the fluid 1s also quite generally given by [6]
€=0,QK 0RO _ (- Ky1pRY) (14)

We also find from the z —~ o= limit of the QHNC ap-
proxamation for ¢y (2, E5,42) that

K® =2 K3, (3 cos?6, + 1) (15)
and on using (2), (3), (9) and (12)—(14) we have
K = (g2anply) (e — 1)* £2/Q, (16)

where the superscript (2) means agam the term of
O(£2) Note that 1n (16) K,(zz) 1s independent of the
inchnation 8, of the wall dipole Consistency with the
thermodynamic theory (11) demands that

09 ae/3p9 = (e —1)?/3y 17)

Thus relation 1s indeed satisfied by the simple Debye
equation (e — 1)/(e + 2) =y, but the more exact ex-
pression [7,8] (for arbitrary y and p? - 0)

(e-DNe+2)=y -3+ (18)

introduces a discrepancy of O(y2)n(17). Since higher
order approximations dertved from the HNC equation
do not produce additional contnbutions io K, of
O(E?), the apparent inconsistency hies 1n 1ignoring the
bridge diagrams.

4. Bridge diagrams of O(E?)

The bnidge diagram of O(E2) and to lowest order
mn the fluid density can be represented graphically,
when z - oo, by

-
-

B*(2,1)= £ : (19)
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where 0— — — —0 =3K,, D(2,:1).and
2 4 1 -

3

1s the three-particle direct correlation function c3(X,
X3.X,) for the flud with X, =(r;, &,) B*(2,1) con-
tr-butes to the wall—particle direct correlaiion func-
tion In (19) the open circle 2 1s the wall dipole root
point, the half black circle @ signifies angular integra-
tion over the orientations of the bulk fluid dipole 1
and the black circles (field points) represent spatial
and angular integrations of fluid dipoles To evaluate
(19) to lowest order in p? and m; we use the low-den-
sity limit 1n terms of Mayer f functions

c3(X 1, X3, X)) = (X1, X3) f(X3,Xy) f(Xy,X,)

(20)
and retain only the » = 1 term in the perturbation ex-
pansion [8,9]

f(Xp X,') =f0(r[])

+ [1 + fo(r,)] "E=1[Bm%D(z.])/r3]" @n

for the Mayer f function, where f; (ru) is the corre-
sponding Mayer function for the reference hard-sphere
system The bridge diagram 1s now evaluated analyti-
cally using Hankel transforms and we find eventually
that when z - oo,

B * (o) = — 55 (e — 1)? pyE2 mpd, (22)

in which the contribution from the three-particle cor-
relation funciion appears as the third vinal coefficient
for hard spheres! Adding thus to (16), after using (9),

we have

K@ z[ﬁ(e —1)? _5(e -1)? By] E?
4 3
24mpQy 12811'p(1) Q
where =~ emphasizes that our calculation of the bndge
diagram of O(E2) 1s correct only to lowest order 1n
p? and m) . Ths 1s sufficient however to test the mo-

lecular theory against thermodynamucs using (18) for
the dielectric constant. Instead of (17) we now need

p{ 3e/0p] = (e — 1)*/3y — & (e —~1)%y, )
which s consistent with (18) to O(y2). We have thus

(23)

191



Volume 79, number 2

shown that the bridge diagrams make significant con-
tributions to the density when z — o=, and it appears
Likely that they affect the density profiles also when
the dipoles are closer to the wall Theoretical studies
of the ordenng of dipoles and ions at a wall that have
appeared so far ignore these bridge diagrams

5. The polarization density P(e°, E;) in an open
system

From the defimtion of P(z, £5) n the grand ensem-
ble {6] we have

P(z,E5) = (0919 [y (z.E2,921)§,(2,)dQ2 (25)

In our discussion E 1s independent of = [see (2)]
Using the tnvariant expansion for /5, (z. E5. £2;), we
find, after doing the necessary angular integrations,
that

P(==. E5) =mlp?1\'21 3 c05292 + 1)”2 é,, (26)

which 1s independent of any approximation for the
wall—particle correlation function' Employing the
QHNC appro~ximation for Koy given wm (12),

P(.E5) = Bdm}E, [20, (2K ;00R3))
+Q_(—KypdR3D = 3K, /(1 +K)17! (27)
= [(e — 1)/a] [352/(26 + 1)}

K e—l]—l
X [‘ T30 +K,) 2e+l 8)

When K, =0 (i.e 1n the absence of electrostriction as
in the MS and LHNC approximation) and when all the
hugher coefficients of £ (2 = 3) 1n (3) are assumed
zero, we recover the constitutive relation (1) Con-
versely when K, and the higher coefficients in (3) are
not zero. non-linear terms 1n the polarization density
will appear. Substitution of (15) and (9) 1n (28) follow-
ed by expansion of the denomnator draws out the
term of O(E%) 1n the QHNC approximation for the po-
lanization density which 18

Pounc (=, E)= [(e — 1)/4n}[3E,/(2¢ +1)]

X [ 1+B (ﬂ)?’ f-%-} +OES).  (29)
Sﬂ-‘o{l}yz 2¢e+1/] Q 2
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If the non-linear terms in (3) are neglected

Pounc (=, E) = [(e — 1)/4n]E

B (6“1)3 E 5
X [1+247rp?_v2 %+l 0 } o) GO

A more complete calculation of this term in the
QHNC approximation would require the determina-
tion of the coefficient of the E% term 1n (3) when 8,
=0 An exact calculation of the term of O(E3) would
require in addition that the contributions of the bridge
atagrams to electrostriction {see (22)] and to the rela-
tionslup between K4, and £, be included
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