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Applications of the contact value theorem and two sum rules to a dipolar fluid adjacent to a charged wall are
considered. Statistical mechanical formulas for electrostriction, changes with the field of the singlet density at
contact with the wall and changes in the distribution functions at contact with the wall are derived.

I. INTRODUCTION

In this note we discuss applications of the contact
value theorem!*? and two sum rules® to dipolar ordering
near a charged wall., Expressions which relate the
singlet density p(¢, E) and molecular correlation func-
tions [e.g., Ah(1,2;E)] to changes in the bulk pressure
p(E) and bulk density p(x, E) are obtained. These
changes can be related by thermodynamic arguments
to the Maxwell field E, the dielectric constant €, and
its derivative with respect to the bulk density. The
particular relationships obtained are found to be criti-

cally dependent on whether the system is open or closed.

The two sum rules considered are

LB _pluta) s

3E,
+fd2p,(2) “np(2, E) h(1,2;E)] (1.1)
and
-%9(1,13):]%@2 wuh (L2 |, (1.2)
and the contact theorem is
p(E):kTp(g, E>—8£1§ ; (1.3)

In these Eqs. p(i, E) is the singlet density of dipoles of
diameter d and dipole moment u(7) at “position” i char-
acterized by the spatial and orientation coordinates

(r;, Q,), where r; =(x,, y,,2;) and the z coordinate de-
notes the distance from the wall. In Eq. (1.2),
ph(1,2:E) is the truncated pair-correlation function
related to n(1, 2;E) of Eq. (1.1) by

ph(1,2;E)=p(1, E) p(2, E) r(1, 2; E). (1.4)

All of these functions as well as the bulk pressure p(E)
depend on the electric (Maxwell) field E. The external
field, denoted by E,, is assumed to be perpendicular to
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the wall. Finally 8=(kT)"!, where % is Boltzmann’s
constant and T is the absolute temperature.

tI. APPLICATION OF THE SUM RULE EQ. (1.1)

Equation (1.1) can be written as

2%SIE’—E—)=BMJ(1, E)
0

X [(cos 6, +J‘dﬂ2 dr, cos 6,p(2, E)n(1, 2; E))] ,
(2.1)
where g = | K| and 6, is the angle which the dipole at
“position” i makes with the unit normal #. Since the
field is perpendicular to the wall, the singlet density
pli, E) can be expanded in Legendre polynomials
[P,(cos 8,)]:

oli, E) =z°; pa(zs, E) P,(cos 6)), (2.2)

where, using the orthogonality property of the Legendre
polynomials,

2

moan+1 (2.3)

+1
f P,(cos8,) P, (cos8,) d(cos 6,)=5
4

we have

palzy, E)=2n2+1 fp(i, E)P,(cosf,) d(cosf,). (2.4)

In particular, p)(z, E) is the angularly averaged singlet
density and
3
pi(z, E):;(P(z, E) (2.5)

is related to the polarization density per unit volume
defined by

*(z, E):g fp(z, E) Py(cos 8,) d(cos 8,). (2.6)
Since E is normal to the wall, ®(z, E) is also perpen-

dicular to the wall.* Substituting Eq. (2.2) in Eq. (2.1)
and making use of the relation®
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+1 n 1 ny
fi P,(cos6;) Py(cos 8,) P, (cos 6,) d(cos 9‘.):2(0 0 0) , (2.7
where the expression in parenthesis is the Wigner 3-j symbol, we have
3p, (Z, E) (zn +1) n1
4;-Eo [22 0 o 0 pa, (2, E) +fdr2 Z Pay (2, E)®,,(z, E)dQ, dQ, P, (cos §,) P,(cos8,)
X (1, 2; E) Py(cos 6,) P,,(cos 62)] . (2.8)
The products of Legendre polynomials can be written as®
nany ny n o my
P, (cos 8,) P,(cos 6,) = Z P, (cos6,((2my+1) < > , (2.9)
! my=ing-nql 1 0 0 0
ng+l 1 ny My 2
Py(cos 8,) P,,z(cos 6,) = Z P, (cos8,) (2m, +1) ( ) (2,10)
STty 2 0 0 0

Using Eqs. (2.9) and (2.10) in Eq. (2.8), one finds

3p,(z, E) @n+1) [ n 1 n\2 (1 Ny le) (m n m1)
°E, 2 P 22"1:(0 0 o)p’“(z’EH 2, (@my+1)(2my 1) 00 0 0o o o/ Pl E)

n{img
mgsmy
* faren (e, B0, 2 B, | (2.11)
where
(L, ZE) = Jdﬂldnngl(cos 6,) P,,,(cos 6,)h(1, 2; E). (2.12)

In particular for » =0, we have from the properties of the 3-j symbols that n; =1 in the first term of Eq. (2.11)
and n; =m, in the second term. Therefore,

8pylz, E) @ E n z“’: i ng 9l <1 ny m2>2 ¢ E ( Lo
e =soGmel 33 L @men(y o) e ) [ drs0,, (2, BYRL, 25 BNy,
ng*0 my= =lng=

e (2.13)
r

This is an exact expression for the external field de- x D™ . (Q) D, (Q,) D5 (Q3) DI (), (2.14)
pendence of the angularly averaged singlet density.
When z - =, we get the corresponding expression for where we consider the triangle (A) formed by the cen-
for the change in bulk density with the external field ters of the molecules as just another “molecule.” The
electrostriction.® The distribution functions k(1, 2; E) coefficients in Eq. (2.14) must be invariant under
are essentially three-body correlation functions involv- rigid rotation of the whole assembly which means that
ing the planar charged surface and two particles in the we can rotate it rigidly through an angle  =(a, 8, 5)
fluid where we consider the “electrode” as an infinitely and get the totally symmetric representation.’ The ro-
large charged sphere. tations are given by®

The most general expansion of a triplet of molecules
s pr.(@)= 2. D.(@) D%, (@) (2.15)

o

1,2,3)= ETS oot ane iy Y13y 723)

g, m,zn:s.lv wutvetaet TR T8 T2 and the totally symmetric representation is obtained
e using
i

—g fdn D™ .. (Q) D (Q)DF 10 (Q) Dy, ()

m n j j s 1 m n j i s 1
jz" (2] +1)( )"t' ( v —Z>(Z o 7\><P-” U” —-Z”)(Z” 0_// 7\”> (216)
N A 3
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from which, after some straightforward algebra, we
get

g(1,2,3)= Z (2 +1) gmois'i gy, 713, 723)

mnstj
BVOA

X@er:;s;;J(nb sz 93’ QA) (2- 17)
with

an,st j(nl’ 02’ 03’ A)

- E (=) m n j j s l
w'dve p,” !t g P A Y

XD™ 0, (8,) Do (R5) DSs o(R3) Dy (2,) - (2.18)

Now if we take the electrode as the limit of a big charged
sphere (particle 3) then

s=o=0'"=0, (2.19)
' 1
— )=\
( A,,)—G-"a’“'“"( ) 7?],-:_-1' » (2.20)
£(1,230) = D g mh(12; ) )0 (2,2, (2.21)
%
with
IR, 2,9,)

-2 <”f " ’,)D:.u«zom,(ne)nbuw :
wevhoa (2.22)

where w stands for the wall.

Consider now as a further restriction the case in
which we select a particular reference frame such that
the z axis is parallel to ry,. Then the Euler angles of

the triangle A(1, 2, 3) are £, =(0,0,0) and
Dix' €©,) =50 60 {2.23)

and we immediately have

201, 2500 = L £, 2 ) 3 D5 @) D" _,,(m;)(m " ’),

z -z 0
(2. 24)
—Eg",..(l,z;w)o. Q%) D2 (08) , (2. 25)
with
1
" (1, 2 0) = Z( . 0)emm(1, 2 w) (2. 26)

and A(1,2; E) =1+g(1, 2; w).®

The averages of the correlation functions (1, 2; E)
defined in Eq. (2.12) can be written in terms of the
three-body correlation functions.

(1, 2 E) )y, = GT;fdQ A9, D78, DLXQ,) h(1, 2; E)
(2.27)
L (2. 28)

= (2my+ 1)(2mg+ 1) gooro2(1, 25 w) .

3235

Substituting in Eq. (2.13), we have

8pq(2, E) _ [6’(2 E)+—Z Z

ik, 1 ng Mgy 2
8E‘D nz‘o my*0 mo= nz-ll 0 0 0

X (2my+ 1) pp, (2, B) [ drop, (2, E)aedls®(1, 2; w)] -

(2.29)
Corresponding expressions for the external field depen-
dence of the polarization density

%pl(z, E)

and the other coefficients (n> 1) in the expansion of Eq.
(2.2) can be readily obtained from Eq. (2.11) by analo-
gous methods. The resolution of Eq. (1.1) into its com-
ponents immediately invites the construction of approxi-
mate theories which use only a few terms of expansion
in Eq. (2.29).

1. APPLICATION OF THE CONTACT THEOREM
EQ. (1.2) AND THE SUM RULE EQ. (1.3)

To obtain the contact theorem for a pure dipole fluid
against a charged wall requires only a slight extension
of the argument for an ion—dipole mixture.? For such
a mixture it has already been shown by Blum and Hen-
derson that

plmix) = kTZp (—“ E) %Ta,

where p{mix) is the pressure of the ion-dipole mixture,
pa(2, E) is the singlet density of species @, andd,, is
the hard-core diameter. Now consider the case when
all the ions are condensed on one wall. Then we have
the contact theorem for hard dipoles®

(3.1)

d E}
HE) = kTp( 2,E> 2 (3.2)
Subtracting the result at zero field, we have
PE) -p(0) + 2 kT[ (% 5)-0(% o). @

Thermodynamic expressions for the change in pressure
with the electric (Maxwell) field E are discussed in the
literature.'*!? The relevant relations (dropping the «
and E in parentheses) are (see Appendix)

(), =~ (), ...~ (55)
e 22 _e, (3.4
pkr \BE/y »r \8E/y y,r “P\5p N.E,T , 3.9)
1 (Bp) (ao>
—(£) =p(zZ) 3.5
prr \8E/, 1 P 8p Jg,r (3.5)

py  _
(aE)u.T ¢

where p is now the chemical potential and «, is the com-
pressibility defined by

(3.6)

1 (8p)
Kp=—|=— . 3.7
T p\9/g,r @.7)
In the linear regime,
€-1
®= o E (3.8)

and Eq. (3.5) can be integrated to give!®
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2 0(0)%  8e
E) - = flﬂ(_ —_ 2
p(E) —p(0) 81 p(0) (3.9)
where «% is the compressibility at zero field.

In this linear approximation, we have from Eqs.
(3.3) and (3.4) to Eq. (3.5):

{a) for a closed (N, V,T) system,

kT[p(%, E) —p<%, 0)} = g + g[(e -1) -p(0) 5;—(%} )

(3.10)
(b} for an open (u, V,T) system,
d d EZ Ea
- -ol= =20, (e -
kT[P<2, E) p<2,0>] ar * 7 (e -1) . (3.11)

Finally we consider an application of the sum rule
given in Eq. (1.2). Integrating

d
p(e, E) —p(E, E) =fdr1d9‘d92pfz(l,2;E)|,2=d,2 .
(3.12)

Multiplying by 2T and subtracting the corresponding re-
sult at zero field, produces a result for electrostriction:

kT [p(=, E) = p(=, kaT["(%’E) —p(%’ )]

+fdr1d01d92[p{2(1,2;E)’,2,d/2—p71‘2(1, 2; 0)‘12=d/2] .

(3.13)
If we use Eqgs. (3.8) and (3.11) for an open system we
have

fdrx dQ,dQ, [p(1, 2; E)‘ £97d/2 —PxTz (1, 2;0)|zz=d/z]

b0 iy B€ E* Ej
—[xfp(m S (e-n} £k, (3.14)
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APPENDIX: THERMODYNAMICS OF A DIPOLAR
FLUID IN AN ELECTRIC FIELD

We summarize the basic thermodynamic results used
in this paper by following the discussion due to Frank,
except that the linear constitutive relation between the
polarization density P(~, E) and the Maxwell field:

p=-"1g (A1)
47

is not assumed in deriving the general relations, al-
though our equations may be specialized to this case.

We make a careful distinction between properties de-
rived in an open system of fixed volume V, temperature
T, and chemical potential p ={u, Ly, -+ ., kot Of €ach
species and a closed system in which V, T, and the num-~
bers of moles N={n;, n,, ..., n,} of each species is held
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constant. We aiso discuss a system of fixed (T, p, N).
All of these systems which are subjected to an electric
field can be realized through the thought experiment de-
scribed by Frank.!!

The fundamental thermodynamic relation for an open
system in an electric field is
o
AU =TdS - pdV+E - d(V®) + 2 pu;dn; , (A2)
i=1
where the symbols have their customary meaning and

the pressure p has the operational definition discussed
by Frank.

Defining
G*=U+pV-TS~E. (V&) , (A3)
we have
dG* =~ ST + Vdp — (V®) - dE+ D i, dn, . (A4)
1

(a) System at constant N, p, T —the bulk density p and
chemical potentials p are functions of E.

From the Maxwell relation

A

(A5)
8V a®
-- o( ——) - V(——) (A6)
%P /g, N7 89 /g, N7
we have
(%) (32) e (35)
(&) =-me (o 2 (A7)
p(BE N,»,T T 80 /g, n,r \8P /g, N, T
8
=K rvn -®| , (A8)
T[p<ap)z.u.r :\
where the isothermal compressibility
1<3V) 1<8p>
Kp = — | — === . (A9)
T V8P Jg,n,r P\BP/E, N T

For a system consisting » moles of one component whose
chemical potential is p,

(9&) .;_("(_V"’_)) -_Ve
8E/x.p,1 81 /g1 ’

where V is the molar volume. Equations (A8) and
{A10) are the basic results for this system.

(A10)

(b) System at constant N, V, T —the pressure p and
chemical potential change with E. The bulk density p is
independent of E.

81) =_("i> (ﬂ) (A11)
(BE N,V,T 8V/ g, m,r \OE /y,p,r
1
=P+V —) , (Al12)
(5%) g
where we have made use of Eq. (A6):
sp) (86‘)
= =@-p|— (A13)
<8E N V,T 8p /g, N,T
Likewise it is easy to show that
e~ 7o(50)
bl =2 =~ Vp{— . (A14)
<8E R, V,T P\ep E.N,T
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(c) System at constant u, V, T —the density and pres-
sure change with E. We have

(8.~ (50).s (oD

(A15)

where V=~ (81/8p)g,r and Eq. (A10) have been used in
the last step. To obtain the change in volume with E
[since V=V(T,P,E,N)] we have,

9, )3
8EJr.u \8E/np.r \8 /r,e,w\®E/r . ’

where we have used Eqs. (A6) and (A15) in the first step

of Eq. (A17):
1e2) _yo(22)
P\OE/r,. T\8p Jenr

To summarize, our basic results are Eqs. (A8) and
(A18) for electrostriction, Eqs. (A13) and (A15) for the
change in pressure with electric field, and Eqs. (A10)
and (Al4) for the change in chemical potential with elec-
tric field. Note that each of these quantities depends
crucially on the variables that are held constant in an
open and closed system. If the linear constitutive re-
lation is assumed, we get the relations discussed by
Frank. In particular,

08,8 EblE), 1]

(A16)

(A18)

(A19)
1 (o) _E (o€
PKr <8E>u o 47 p<ap)E,T ’ (420)
)y _E  _
<BE>H,T_ ym (e-1) . (A21)

To obtain the thermodynamic formula for electrostric-
tion in an open system we integrate Eq. (A20) assuming

kp =Kp +O(E® , (A22)
% __%¢ 2
50 = 5p(0) +0(E?) , (A23)

3237

and obtain,

0 2
_ _k p{0)® o8e _, A24
p(E) ~p(0) = TEZ- B2 (a24)
which is Eq. (3.9) of the text. Since k%= /p(0)Q, where
@ is the inverse compressibility,

Bp(0) / 8e \ E?
p(E) - p(0) = 7(8“0)) ik

This is the thermodynamic formula for electrostriction
which is compared with the statistical mechanical cal-
culation in Ref. 6. Microscopic derivations of Eq.

(A25) follow from the work of Hgye and Stell'* and Carnie
and Stell. '

(A25)
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