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The adsorption of dipolar hard spheres in the presence of an external electric field has previously been
studied within the context of the mean spherical approximation. In order to quantify the significance of the
physical trends found above, the problem is solved within the higher order closure rules afforded by the
linearized hypernetted chain approximation. Expressions for the reduced dipole moment and the
electric field strength are derived using only the asymptotic forms of the direct correlation functions. It is
found that the favorable orientational correlations between the dipolar hard spheres and the wall are
underestimated by the mean spherical approximation. This is emphasized in the enhanced adsorption of the
dipolar species (at the wall itself) for dipoles oriented close to the direction of the field. However, the
nonphysical features of the mean spherical approximation (manifested in the negativity of the density profile)
are not fully rectified by the use of the linearized hypernetted chain approximation.

I. INTRODUCTION

The adsorption of dipolar molecules at a wall, in the
presence of an electric field, is of interest in the study
of electrode and membrane phenomena. Here the ad-
sorption phenomenon is delineated by the distribution of
molecules at a particular orientation £, and distance z
from a hard planar wall p,(z, E,, £,). The electric field
E, emanates from this wall, the declination of the field
with respect to the wall being allowed by its nonconduc-
tive properties. Isbister and Freasier! have investi-
gated this problem for hard dipolar spheres against a
hard wall using the mean spherical approximation
(MSA). Their results for the density profile p,(z, E,, £,)
of dipoles are of great interest even though they suffer
from the defect that the wall particle density profile
pi(z, E, ;) assumes negative values at certain relative
orientations of electric field (E,) and dipole moment m,
of the particles in the fluid (the dipole orientation is de-
noted here by £,). However, the argument leading to
the electric field at the wall is not swayed by the approx-
imation used, and may be employed with more accurate
theories such as, for example, the linearized hypernetted
chain (LHNC) approximation. While these theories could
be expected to produce better results, they do suffer from
the necessity of employing numerical methods to a
greater extent than is needed to determine the density
profiles in the mean spherical approximation.

This paper is devoted to a study of the wall-particle
density profile using the linearized hypernetted chain
approximation? for the wall particle and particle—parti-
cle interactions, except that the effects that are inde-
pendent of the orientations of the electric field and the
fluid dipole are treated exactly. In our study, these
are the interactions between the hard cores in the
fluid, and also the interactions between these cores and
the hard wall. We call this the renormalized linearized
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hypernetted chain approximation (RLHNC) after the
nomenclature introduced by Stell and Weis.?® Our re-
sults for this theory are an improvement over the cor-
responding MS approximation when the system is char-
acterizedby (a) a reduced fluid density ot =pR%,0£0.573.
(b) a reduced dipole moment m} =m,/VETR}; of V0.5
(or equivalently a reduced temperature T*=1/m}2 of 2),
and (c) a reduced external electric field E; = E,R3,/m,
of 8/3. In contrast to the MS approximation, the
RLHNC wall-particle density functions p,(z, E,, 2,) are
only marginally negative near the wall for a dipole ori-
entation in direct opposition to the field (see Fig. 2).
These functions, however, can become negative over a
larger distance z from the wall when the reduced dipole
moment is increased to 1.0 without altering the reduced
electric field or reduced density (Fig. 5). This sug-
gests even higher order terms, beyond the RLHNC ap-
proximation, must be included in the theory when the
dipole moment », and the external electric field E, are
both large.

1l. GENERAL THEORY

The technique of producing a wall next to a fluid by
taking the limiting behavior of a binary mixture (with
densities p,, p, and radii R,, R,) detailed by

lim lim (2.1)
Rg=® po~ 0
is well known.* Isbister and Freasier® have extended
this to introduce an electric field, as well, by consid-
ering the corresponding limit for a dipolar mixture un-
der the restriction that the dipole moment m, of par-
ticle 2, which eventually becomes the wall, divided by
the cube of the radius of the excluded volume R, =R;+R;

is a constant (hereafter called E,):

lim my/RY =E, . (2.2)

Rge®

In taking these limits, in the specific order p,—~ 0, R,
-~ the volume of the system is allowed to grow faster
than R}, keeping p, constant through the constraint that
PR3~ 0.

The magnitude and direction of the electric field E,
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FIG. 1. The electric field angle o, at the wall plotted against

the inclination 8, of the “wall dipole” which resides at minus
infinity and produces the electric field £,. The angle 6, is the
inclination of a dipole in the bulk fluid.

follow, when this limit is applied to the dipole-dipole
interaction energy

Varlry, Qi £ =- ﬂ,}faﬂa D(2,1) . (2.3)
21
Here
D(Z, 1)=§1' (3;'21';'21—11)' Sz > (2.4)

§1 and §, are unit vectors in the directions of the dipole
moment vectors m; and m,, respectively, (3, ;21 -U)
is the dipole~dipole interaction tensor, in which 7, is
a unit vector in the direction along the line joining par-
ticles 1 and 2, and U is the unit tensor. The potential
may be written in terms of the electiric field E,, pro-
duced at the location of particle 1 by the second parti-
cle 2,

V(o Qg 2))==my 8, Ey (2.5)
where
E,= e, . (2.6)
Va1
In Eq. (2.6)
€,= (3791 75 — U) + §,= (375 cOS0, — §;) (2.7

and 0, is the angle which the dipole embedded in particle
2 makes with #,, (see Fig. 1). Since the magnitude of
e, is (3 cos?h,+ 1)V 2,
E, - M2 (3 2 ey
2= 3 (3cos®9,+1)" e, , (2.8)
Ya
where e, is a unit vector in the direction of E,. Changing

variables to r, =R,+2, and taking the wall limit, the
electric field

E,=Eq(3cos%,+ 1)1 25, , (2.9)
which shows that E; is independent of the distance z from
the wall, but that its magnitude is determined by the
strength (through E,) and the direction (through 6,) of
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the “wall dipole,” which has receded to a distance -
from the wall. At that distance, the vector r, becomes
perpendicular to the wall, and the electric field which
makes an angle a; with respect to this normal is given
by the appropriate solution to

" A 2 cosé
cosa;=¢e, - 7’212——'j_a—r7"§(3 o520, + 1) .

The solution to this equation gives the direction of the
electric field uniquely, in terms of the orientation of
the wall dipole at minus infinity (see Fig. 1).

(2.10)

The density profile p,(z, E,, 2,) of dipolar molecules
at a distance z from the wall depends on the dipole ori-
entation €, on the direction of the electric field E, and
on other parameters of the system. It is obtained from
the relation’

p1(z, Eg, 24) = lim {%;P}; p1 [hay(ray, Qa5 Q,) + 1]} , (2.11)
where p, is the bulk density of species 1 and y;(ry, Qa,
©,) is the total correlation function of species 1 and 2 in
a binary mixture. The latter is the solution to the Orn-
stein-Zernike relation

2

1
h21=c2,+ﬂz;p,h2,,©c,1 , (2.12)

o
where O=[dr,dQ, is a convolution involving spatial and
angular integrations. Assuming the invariant expansions

oy (7 a1y Ry Q) =05 (ray) + 3 (75y) A(2, 1) + b5y (v, D(2,1) ,

(2.13)
carars Qo R4) =51 (ry) +emlra) 8(2,1) + Clz)l("’zl) D(2,1),
(2.14)

and using Wertheim’s multiplication table® in Fourier
space for the angular integrations, the Ornstein-Zernike
relation reduces to three equations

2
Hy=chir 2Py By x (2.15)
4
- 1S - -
Wy =5+ 52 py (RS, % O + B, * ci+ k5, % CP) ,  (2.16)
£
1 -
hey=0i+ 5 2 Py(2h3 % Cy + g ¥ cfy) 2.17)
r=1

when * = [ dr; is a convolution involving only spatial in-

tegrations. In Eqs. (2.16) and (2.17)
h2(v) = HB4(r) - 3 f ds s hB4(s) '(2.18)
r
and its inverse is
D 7D 3 (Tsp 2
HEslr) =hBlr) = 5 fo 724(s) s2ds (2.19)

with similar expressions for c24(r) and c24(») in which

@, B=1or 2. Inside the hard cores
hs (7') - 1 )
e ‘ (2. 20)
hﬂB(T) =h§s(7’) =0, 7<RaB =Rq +RB ’
so that from Eq. (2.18)
228(7’)2_3}{&5 ’ 7’<RaB ’ (2.21)

where
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Kaﬂ=f hDs(s)stds . (2.22)

Rag
Following Wertheim, ® the relations for ;zgl(r) and
h5,(¥) may be uncoupled by taking linear combinations

hag(r) = [MBa(r) + 3 hs(r) /3K o5 (2. 23)
Fog(@) = [R2(r) = h25(1) /3K ag » (2. 24)

with analogous expressions for cgg{r) and cyg(#). The
closure conditions (2. 20) when applied to Eqs. (2.23)
and (2. 24) are equivalent to

e ==1, ¥<R, . (2. 25)

On using the linear combinations Ag4(v) in Egs. (2. 16)
and (2.17), one finds
2
Ho(r) = ¢y () + E;K,, pihg, *Cy (2. 26)
pom
where p; =2p,, p; =—-p,. Equations (2.15) and (2. 26) re-
semble the Ornstein—Zernike relations for a binary

fluid, in which the molecular interactions are spherical-
ly symmetrical.

In the limit R,~«, Eq. (2.19) together with Eqgs.
(2.23) and (2. 24) yields

n3i(2) = [2h5(2) + k5, (2) + 3] Ky - (2.27)
As p,~ 0, Egs. (2.15) and (2. 26) reduce to

h3(r) =c5,(¥) +py k3 * c5y (2.28)
and

hsi(7) = c5(7) + Ky p H5y * €51 s (2.29)

which can be written in bipolar coordinates as

+ o T
h§1(7)=c§1(7)+y%u£l-fo dtth;l(t)j; “dsscfl(s) .
e

(2. 30)
On substituting ¥ =Ry, +2z, t =Ry +y and on taking the wall
limit Ry -, we find, for z>0,

ds s c51(s) ,

(2.31)
where z is the distance of the center of the dipolar hard
sphere from the wall. The integral between the limits
— and © may be simplified by noting that hy(y) =-1,
when - <y<0, and in addition iz -yl =z -y, when
z2>0 and -2 <y<0. On changing the order of integra-
tion between -« and 0,

0 © w©
f dy h*al(y)[ Idsscfl(s)=f ds(z ~s) sciy(s) .
’ (2.32)

51(2) = c3;(2) + 2K, 7p} f dy Fz ()

1 z=y1

Defining the functions
Z z
B*(2) = f cti(s)sds , D*(z)= f cti(s) s?ds , (2.33)
(] o
the wall~particle + equations become
Ha(2) = c51(2) + 27 Kyy pi{z [B*(=) — B*(2)] - [D*(=) - D*(2) ]}

+27 Ky pt f dy () [B*) - B*(|z - 9])]

(2.34)
where the functions B*(z) and D*(z) are entirely deter-

mined by the interactions between the particles in the
bulk fluid. An analogous equation can be written for the
angularly independent part of the wall-particle total cor-
relation function

k5 (2) =5,(2) + prl{z [B5(») -~ B%(2)] - [D3() = D*(z) |

+f dyh;l(y)[Bs(“’)—BsdZ-ym}, (2.35)
0

where B*(z) and D°(z) have definitions which correspond

exactly to B*(z) and D*(z).

In Egs. (2.34) and (2.35), {c(2), c§(s)} and {c},(2),
¢t (s)} are sets of two different, but consistent, direct
correlation functions with corresponding closures (dis-
cussed in the next section) for the wall—particle and
particle—particle interactions, respectively. The func-
tions c¢f,{») and c3,(») for the bulk fluid particles are ob-
tained in an independent calculation from

(2. 36)
(2.37)

ki (r) = ciy(v) +py iy % ci1 s
Biy(r) = c1y () + Ky pi AT % €1y s

which are the one-component analogs of Eqs. (2.28) and
(2. 29) first derived in a seminal paper by Wertheim.®
These equations carry their own closures for Ay (#)(r <Ry,)
and c1,(#)(» >R,;). We do not actually solve Egs. (2.36)
and (2. 35) since nearly exact results are available from
the work of Verlet and Weis® for hard spheres and from
the study of Waisman, Henderson, and Lebowitz’ for
hard spheres against a wall. Our RLHNC approximation
(Sec. III) implies that #3,(z) is the exact wall-particle
total correlation function for hard spheres against a
hard wall. Equation (2. 37) has been solved by Wer-
theim, in the mean spherical approximation,® while
Patey and his colleagues have treated it in the LHNC
and QHNC approximations, ® using the Verlet~Weis the-
ory for the hard-sphere interactions. We are therefore
left with the necessity of solving only Eq. (2. 34) under
the appropriate closures for the wall-particle and par-
ticle—particle direction correlation functions.

The constants K, and K,, determine the dipole mo-
ment m, and the electric field E, through the relations

47 m?
TR . Q.(2K1p RY)) - Q(— Koy RY)

35T (2. 38)
and
m E
'_]:TJ =Ky [2Q+(2K11P1R?1)+ Q.(- Kule'iH)] , (2.39)

where 2 and T are the Boltzmann constant and absolute
temperature, respectively, and @Q,.(p; R%l) is defined
by:

@.(oyR3) =1 —47p, fo (7, py) #2dr . (2. 40)
Equation (2. 38) has been derived by Wertheim® in the
mean spherical approximation, but its extension to the
LHNC (or RLHNC) approximation is straightforward;
nevertheless we present it for completeness and as a
prelude to the derivation of (2. 39), which Isbister and
Freasier! discussed in the mean spherical approxima-
tion. The derivation of Eq. (2. 38) rests on the asymp-
totic form of cfi(») [see Egs. (3.1) and (3. 6)]
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which is identical to Eq. (2.39). It should be empha-

sized that Eqs. (2.38) and (2.39) are relations derived
from the asymptotic forms of ¢P and cé’l in the MS and
LHNC approximations. The dipole moment », and the

2
- E;’glu(z, 1), asy—=o . (2.41)

On inserting this in

ADy N _ D = 1D electric field E, are determined from K, and K,,, after
culr)=cylr) - 3£ dss”cn(s) , (2.42) the solutions to Eq. (2.37) have been obtained.
one sees that ¢ (#) is short ranged and tends to zero as The constant K, also retrieves the coefficients h3(z)
y—oo: and k3 (z), which appear in the invariant expansion of
aD the wall-particle correlation functions
chr)=-0, asr—= . (2.43)
When the inverse relation [cf. Egs. (2.19) and (2.18)] hoi(z, By ) =h,(2) + B3 (2) D(2, 1) + A5(2) A(2,1)  (2.51)
ch@) =ch(») -3 f C1i(s) s?ds (2.44) by inverting Eq. (2.23) and (2.24) and using Eq. (2.27).
Both #3,(z) (for the closure rules considered in the next
is taken to the limit » - =, one also finds that section) and #%,(z) are short-ranged functions and tend
to zero as z —=, and the asymptotic form of 45 (z) is
Z1._3 f chi(s) s?ds therefore
Lim k3,(2) = 3K (2.52)

-“3K11j(; [2c1i(s, 2K, p1) + c1y(s, Kupl)]szds ,

(2.45)
where we have used the analogs of Eqs. (2.23) and
(2.24) applied to ¢f,{s) in the last step. The result
given in Eq. (2. 38) follows immediately on applying
Eq. (2.40).

which follows from Eq. (2.27) and the fact that k%,(z) is
also short ranged. The asymptotic form of the wall-
particle correlation function for the RLHNC closure,
discussed in the next section, coincides with that of the
MS approximation® and is therefore given by

The relation between Ky, and E, is also derived from Lm ha(2, By ) =3Kx D(2, 1) (2.53)

the asymptotic from of c3() in the MS and LHNC ap- 3, E,D(2, 1)
1Eo

proximations [see Egs. (3.1) and (3.6) in Sec. III|]. The (2.54)
equation for dipolar mixtures which corresponds to Eq. KT [2Q(2K101 1) + Q(= K110y R1Y)]
(2.45) is®
= | [3E3‘3D(2, 1] 3]’ (2.55)

mym 3Ky (TR, - 2 " T*[2Q(2K,,p1 RY) + Q=K1 p R )

rlaxlrzlm ?ifﬁl = rlzllgl-: 7’_311 fo [2¢5,(5) + cy(s) | s3ds here
(2.46)

where we have not canceled the 73, in the denominator, — <kTR3 ) (2.56)
because we intend to take the wall limit. Substituting my ’
731 =Ry +2, and taking the limit Ry, -, reduces the left and
hand side of Eq. (2.46) to m; E,/kT, and replaces the
upper limit of the integral in Eq. (2.46) by ©. The E* - E R}, _ |E,| R} (2. 57)
Fourier transform of Eq. (2.29), which is an Ornstein- 7 m; " (3cos®,+ 1)VE m, T ’

Zernike equation for mixtures, as p,~0, yields Since the electric field is independent of the distance

Ehk) =[1 ~ K, 0t ¢4, (R) | 1ty () (2.47) from the wall, hy(z, E,, ©,) does not decrease to zero

as z—-=, unless the magnitude of the electric field or
D(2, 1) is also zero. The angular average of hy(z, E,, ;)
is however zero in the limit 2 —:

from which, when £ =0, we have

[ chals) s?s =[1 - Kyy ot 4(0)] [ #ats) s?as .
0 0

(2.48) lim fhal(z, E,, 9,)d2,=0 (2.58)
represents the three dimensional =

“~s

In the above, the

Fourier transform since the angular averages of D(2,1) and A(2,1) are zero

P(0)= [arexpic- vt(|x)) and

lim k$,(2) =0 . (2.59)
and f=c or h. “=
We shall now consider the details of these equations in
the context of the mean spherical and linearized hyper-
netted chain closure rules.

Since #3,(s) is a short-ranged function equal to -1 for
s <Ry, it readily follows that

Al P f Mi{s) sPds=-3% . (2.49)
. THE CLOSURE RELATIONS
H
ence, The closures for the wall-particle direct correlation
myE, - 9 _ -~ functions are readily derived by taking the wall limit of
kT =Kal2(1- ~Kupich(O]+[1 - Kupi cuOI1, (2.50) the corresponding closures in the bulk fluid.
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A. MSA

The closure for the direct correlation function is

Copl?) = mﬁD(l 2), for ¥>Rus (3.1)
which is equivalent to
che(r) =0, for »>Rgs . (3.2)

This is unaffected, for z>R,;, on taking the wall limit
of C;l(')’).

B. LHNC approximation

Starting with the hypernetted chain (HNC) approxima-
tion

Capl2,1) = hop(2, 1) —Ing (2, 1) - V,p5(2, 1)/ET (v>Rgyg)
(3.3)
and using the invariant expansions of c,4{(2,1) and

745(2,1) [cf. Egs. (2.13) and (2.14)], one finds
[1+hgﬂ(y)1) (2,1) + RS A(2, 1)]}

Caﬂ(r) =h25(1’) ol ln{ z B(’;’)

- Yadld) Mt gy (3.4)

kT %

where V§; is the spherically symmetric part of the po-

tential. Expanding the logarithm up to the linear term,
and collecting and comparing coefficients of 1, D(2, 1),
and A(2,1), we have

cia(r) =his(r) = IngSe(r) = V() kT (3.5)

m

CaB(T) h B(r [1 giB(T) ] _3-k_7'.,ﬁ 3 (3-6)

caa(v) =h5s(r) [1 —gss(n)?] . (3.7
Defining

bos(r) =hgs(r) [1 - gos(r)!] (3.8)

bﬁs(‘i’) =h25(7) [1 —gsas("’)-l] ’ (3.9)

with bﬁﬂ(r) and bi,(7) also defined by equations analogous
to Eqs. (2.18), (2.23), and (2.24), respectively, the
last two equations can be written in the form

(3.10)

In the RLHNC, Eq. (3.5) is replaced by the exact closure
for hard spheres against a wall.

Cosr) =b5s(r) , v>Rgp -

In the wall limit, b (2) =b2(2), and making use of
Eq. (2.27), the closure condition for the wall-particle
direct correlation function becomes
[1+R5(2)][1-g5()"], 2>0 .

chi(2) = (3.11)

On substituting this in Eq. (2.34), we have, for 2>0,

Hy(2) = [g3,(2) — 1]+ g3,(2) 27Ky, p} {z [B*() - B*(2) ]

+ [D*() - D*(2)] f Hau(e) [B*=) ~B*(| 2 - 3)]

(3. 12)
When g3,(z) =1, the formal equation for %3, (z) in the
MSA approximation is recovered.

Eggebrecht, Isbister, and Rasaiah: Dipoles at a wall

The above equations (3.12) were solved iteratively on
a computer to generate the accompanying figures.

IV. RESULTS AND DISCUSSION

The solution of Eq. (2.51), for hy(z, E,, ,), was ob-
tained as the confluence of three distinct computations:

(1) The bulk correlation functions were calculated in
the manner described by Patey, from Eq. (2.37). The
reduced dipole moment dependence of this relation con-
tained in the constant K,;, through Eq. (2. 38), may also
be expressed in the MSA and RLHNC approximations as

m$
kT R},

m’;z Cu(R“) —b (Rll) (4. 1)
where c?(R},) and 6%)(R},) are the values of ¢} (») and
52, (») immediately outside contact. The value of K,,
was adjusted until this difference assumed the desired
reduced dipole moment. The iteration of Eq. (2.37)
was performed using fast Fourier transform techniques
and mixed solutions to speed convergence. The bulk
fluid correlation functions obtained showed excellent

agreement with those of Patey.?

(2) The electric field which emerges from the wall
was determined by Eqs. (2.9), (2.39), and (2.40). The
field angle a4 of Fig. 1 was taken, in separate calcula-
tions, as 0°, 45°, and 90°. The field angle is related
to the wall-dipole orientation 6, through Eq. (2.10), the
solution of which appears in Fig. 1. The magnitude of
the reduced electric field

|Epi R} _ Eq(3cos®,+1)! 2R},
my my

|E¥| = (4.2)
was taken, as in the earlier work of Isbister and
Freasier, to be 8/3, with the reduced dipole moment
squared rnl2 fixed at either 0.5 or 1.0. For purposes
of comparison of these parameters to a molecular sys-
tem, the reduced dipole moment squared for HCl (m1
=1.03 D) at 275 °K, assuming a diameter of 3.5 &, is
approximately 0.65. A reduced field strength of 8/3
for this system corresponds to an electric field of near-
ly 1.9x10° V/m or a surface charge density o of 1 elec-
tronic charge/1000 A2,

We have also carried out calculations at the same
surface charge density (or electric field E,) for a fluid
at a reduced density of 0.7 with the reduced dipole mo-
ment m¥ =2.0. These numbers correspond approxi-
mately to those appropriate for liquid water (m,=1.85
D, R;;=2.76 A) at room temperature. The reduced
electric field E¥ [which contains m, and R}, in its defini-
tion (4. 2)] is now only 0.71. (It may be useful for the
reader to bear in mind that it is an artifact of our defini-
tion of E} that an increase in the dipole moment m, re-
sults either in a reduction of E} when the surface charge
density is held constant, or an increase in the surface
charge density when Ej is unchanged.)

(3) The spherically symmetric part of Eq. (2.51),
i.e., h3(z), was determined using the technique of
Waisman, Henderson, and Lebowitz.” The function
K5,(z) was first obtained from Eq. (2.28) as the Percus—
Yevick solution and then corrected to produce an essen-
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FIG. 2, The wall—particle distribution functions g, (2, E,, £,)

as a function of the distance z from the wall for different orien-
tations €, of the fluid dipoles where Ej =8/3, m$*=0.5, p}

=0,573, and a;=0°.

Ry is the radius of a fluid dipole.

RLHNC approximation, ----- MS approximation.
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FIG. 3, Wall-particle distribution functions for the system
depicted in Fig. 2 except that ay=45°.
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FIG. 4. Wall—particle distribution functions for the systems

depicted in Figs. 2 and 3 except that &= 90°,
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FIG. 5. The wall—particle distribution function g, (2, E,, ;)

for the system depicted in Fig. 1 except that m}?=1.0.
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FIG. 6. The expansion coefficients 4§ (z) and % (2) as a func-
tion of the wall—particle distance z when E¥=8/3 and p¥=0.573.

The upper and lower curves, in each case, are for mf2= 1.0
and 0.5, respectively.
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9 %_ 250 A%, Both the RLHNC and MSA treatments result
in distributions showing exhanced adsorption for favor-
st able dipole orientations, but the repulsive interactions
of the electric field with unfavorably aligned dipoles is
I more clearly visible in the RLHNC approximation. This
s 6H theory, like the MSA, is essentially linear in character,
c“, and cannot prevent the distribution functions from be-
w's coming negative when the dipoles are aligned against the
~N field, if at the same time the theory predicts a large en-
- 4 hancement of the adsorption of dipoles aligned with the
Y 3 field. When, for example, the electric field is perpen-
dicular to the wall, both theories predict that the den-
2 o sity profiles (see Figs. 2 and 5) are symmetrical about
wAa, /4 the profile for dipoles perpendicular to the field (6,
| = g’;%:”g"/r% =m/2 or 37/2). A large enhancement of dipoles aligned
0 | LT with the field would lead to an equally large depletion of
R 3R 5R dipoles oriented against the field, which may require
' ! ! negative wall-particle distribution functions. Further
z improvements beyond the RLHNC approximation would
FIG. 7. The wall-particle distribution function gy (z, E,, €,) then be necessary. Figure 7 shows, however, that the
as a function of the distance z from the wall, for different RLHNC theory provides plausible density profiles even
orientations 2y of the fluid dipoles when £f=0.71, m}*=4.0, when the square of the dipole moment m}? is increased

pf=0.7, and ¢;=0. The reduced parameters m} and p} are
those appropriate for liquid water at room temperature (m;
=1,85 D, Ryy=2.76 &), The reduced electric field Ef=0.71
corresponds to a surface density of 1 electronic charge/1000 A2,

to 4.0 but the surface charge density is maintained at 1
electronic charge/1000 A2,
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